Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 8 of 8
Filtering by

Clear all filters

132839-Thumbnail Image.png
Description
The world of podcasting has exploded in popularity in recent years. This medium is being used in education as well as in the public sector to share ideas, news, and stories. This paper reviews the research behind podcast success as a news form and in the educational sector and the

The world of podcasting has exploded in popularity in recent years. This medium is being used in education as well as in the public sector to share ideas, news, and stories. This paper reviews the research behind podcast success as a news form and in the educational sector and the implications of these findings for the future. Podcast listeners tend to listen to podcasts for entertainment and, notably, to diversify their time while completing other tasks. New ways to directly stream media from portable devices and advances in the internet have helped bolster the popularity of this media form. Podcasting proved to be successful in higher education as students tended to perform better when given access to podcasts. However, they were only successful when using podcasts as classroom adjuncts. This implies that educational podcasts must be produced differently than ones intended for the public. By reviewing the neuroscience behind language, emotion and memory, it was found that narrative formats that also evoked emotions had a positive ability in enhancing the listeners learning and memory. Keeping this in mind, the developed podcast aimed to bridge educational material to the general public by utilizing narrative as a vessel in which to deliver complex information about medicine, science and neuroscience. The accessibility and virtually non-existent barriers to the podcasting world offer a breadth of knowledge and opinions that have numerous factors of social influence. The impact of podcasting on the modern world deserves more research in sociology and psychology as it continues to grow in popularity.
ContributorsCharbel, Milad (Author) / Sirven, Joseph (Thesis director) / Reddy, Swapna (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132891-Thumbnail Image.png
Description
Aberrant signaling through the canonical RAS/RAF/MEK/ERK (ERK/MAPK) pathway leads to the pathology of a group of neurodevelopmental disorders called RASopathies. RASopathies are caused by germline mutations in the ERK/MAPK pathway and have an incidence of approximately 1:2000 births. The majority of RASopathies stem from mutations that cause gain-of-function in the

Aberrant signaling through the canonical RAS/RAF/MEK/ERK (ERK/MAPK) pathway leads to the pathology of a group of neurodevelopmental disorders called RASopathies. RASopathies are caused by germline mutations in the ERK/MAPK pathway and have an incidence of approximately 1:2000 births. The majority of RASopathies stem from mutations that cause gain-of-function in the ERK/MAPK pathway. In this study, we have begun to unravel the roles that GABAergic interneurons play in the pathology of RASopathies. Our data demonstrate that gain-of-function ERK/MAPK signaling expressed in a GABAergic interneuron-specific fashion leads to forebrain hyperexcitability in mutant mice. Further, some GABAergic interneurons experience activated-caspase 3 mediated apoptosis in the embryonic subpallium, leading to a loss of PV-expressing interneurons in the somatosensory cortex. We found that pharmaceutical intervention during embryogenesis using a MEK1 inhibitor may be effective in preventing apoptosis of these neurons. Future work is still needed to understand the mechanism of the death of GABAergic interneurons and to further pursue therapeutic approaches. Taken together, this study suggests potential roles of cortical GABAergic interneurons in ERK/MAPK-linked pathologies and indicates possible approaches to provide therapy for these conditions.
ContributorsShah, Shiv (Author) / Newbern, Jason (Thesis director) / Gipson-Reichardt, Cassandra (Committee member) / School of Life Sciences (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132964-Thumbnail Image.png
Description
In epilepsy, malformations that cause seizures often require surgery. The purpose of this research is to join forces with the Multi-Center Epilepsy Lesion Detection (MELD) project at University College London (UCL) in order to improve the process of detecting lesions in patients with drug-resistant epilepsy. This, in turn, will improve

In epilepsy, malformations that cause seizures often require surgery. The purpose of this research is to join forces with the Multi-Center Epilepsy Lesion Detection (MELD) project at University College London (UCL) in order to improve the process of detecting lesions in patients with drug-resistant epilepsy. This, in turn, will improve surgical outcomes via more structured surgical planning. It is a global effort, with more than 20 sites across 5 continents. The targeted populations for this study include patients whose epilepsy stems from Focal Cortical Dysplasia. Focal Cortical Dysplasia is an abnormality of cortical development, and causes most of the drug-resistant epilepsy. Currently, the creators of MELD have developed a set of protocols which wrap various
commands designed to streamline post-processing of MRI images. Using this partnership, the Applied Neuroscience and Technology Lab at PCH has been able to complete production of a post-processing pipeline which integrates locally sourced smoothing techniques to help identify lesions in patients with evidence of Focal Cortical Dysplasia. The end result is a system in which a patient with epilepsy may experience more successful post-surgical results due to the
combination of a lesion detection mechanism and the radiologist using their trained eye in the presurgical stages. As one of the main points of this work is the global aspect of it, Barrett thesis funding was dedicated for a trip to London in order to network with other MELD project collaborators. This was a successful trip for the project as a whole in addition to this particular thesis. The ability to troubleshoot problems with one another in a room full of subject matter
experts allowed for a high level of discussion and learning. Future work includes implementing machine learning approaches which consider all morphometry parameters simultaneously.
ContributorsHumphreys, Zachary William (Author) / Kodibagkar, Vikram (Thesis director) / Foldes, Stephen (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133126-Thumbnail Image.png
Description
Animal models have led to important discoveries in biomedical research; their utility to psychiatry and comparative neuroscience is less clear. Disorders of higher-order brain function, schizophrenia chief among them, have proven exceptionally elusive to model. Schizophrenia researchers are of two minds about the possibility of modeling the schizophrenia phenotype(s) in

Animal models have led to important discoveries in biomedical research; their utility to psychiatry and comparative neuroscience is less clear. Disorders of higher-order brain function, schizophrenia chief among them, have proven exceptionally elusive to model. Schizophrenia researchers are of two minds about the possibility of modeling the schizophrenia phenotype(s) in laboratory animals: at one and the same time they are both pessimistic and pragmatic. That is, they admit the discouraging difficulty of the task, and yet proceed, apparently undeterred, with putative animal models of schizophrenia, as if the criticisms that yield the pessimistic judgments simply do not matter. In this article, we survey the criticisms and evaluate their merits. We then ask: what would it mean to take seriously the claim that modeling schizophrenia in at least some non-human animals - namely, rodents - is doomed, futile, impossible? How would, and how should, schizophrenia research be undertaken were the current animal models rejected as simply inadequate to the task? Our aim is not to disparage sound research into the etiology, symptomatology, and treatment of schizophrenia, but rather to emphasize the scope of the gap between current and optimal research practices. We conclude with recommendations to reinvigorate the quest to understand, prevent, and treat schizophrenia.
ContributorsWhite, Erik Jordan (Author) / Robert, Jason Scott (Thesis director) / Nate, Johnson (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
133052-Thumbnail Image.png
Description
The aim of this study was to determine whether IUD administration, with and without the presence of Levo, and with and without the presence of the ovaries, impacts cognition in a rat model. Rats received either Sham or Ovariectomy (Ovx) surgery (removal of the ovaries), plus either no IUD, a

The aim of this study was to determine whether IUD administration, with and without the presence of Levo, and with and without the presence of the ovaries, impacts cognition in a rat model. Rats received either Sham or Ovariectomy (Ovx) surgery (removal of the ovaries), plus either no IUD, a Blank IUD (without Levo), or a Levo-releasing IUD (Levo IUD), enabling us to evaluate the effects of Ovx and the effects of IUD administration on cognition. Two weeks after surgery, all treatment groups were tested on the water radial arm maze, Morris water maze, and visible platform task to evaluate cognition. At sacrifice, upon investigation of the uteri, it was determined that some of the IUDs were no longer present in animals from these groups: Sham\u2014Blank IUD, Ovx\u2014Blank IUD, and Sham\u2014Levo IUD. Results from the remaining three groups showed that compared to Sham animals with no IUDs, Ovx animals with no IUDs had marginally impaired working memory performance, and that Ovx animals with Levo IUDs as compared to Ovx animals with no IUDs had marginally enhanced memory performance, not specific to a particular memory type. Results also showed that Ovx animals with Levo IUDs had qualitatively more cells in their vaginal smears and increased uterine horn weight compared to Ovx animals with no IUDs, suggesting local stimulation of the Levo IUDs to the uterine horns. Overall, these results provide alternative evidence to the hypothesis that the Levo IUD administers Levo in solely a localized manner, and suggests that the possibility for the Levo IUD to affect reproductive cyclicity in ovary-intact animals is not rejected. The potential for the Levo IUD to exert effects on cognition suggests that either the hormone does in fact systemically circulate, or that the Levo IUD administration affects cognition by altering an as yet undetermined hormonal or other feedback between the uterus and the brain.
ContributorsStrouse, Isabel Martha (Author) / Bimonte-Nelson, Heather (Thesis director) / Glenberg, Arthur (Committee member) / Sirianni, Rachael (Committee member) / Conrad, Cheryl (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
133108-Thumbnail Image.png
Description
Abstract White matter thickness correlates with various mental illness. Commissure white matter tracts are responsible for interconnecting the same cortical area in both hemispheres. Injury to the brain can result in thinning and shrinkage even collapsing and detachment of the white matter tracts' myelin sheaths. Injury can affect cognitive function

Abstract White matter thickness correlates with various mental illness. Commissure white matter tracts are responsible for interconnecting the same cortical area in both hemispheres. Injury to the brain can result in thinning and shrinkage even collapsing and detachment of the white matter tracts' myelin sheaths. Injury can affect cognitive function and time points are essential for therapeutic intervention. Research is beginning to identify gradual long-term neurodegenerative effects. With the advancement of brain imaging technology, we know that Wallerian degeneration has a significant negative impact on the white matter tracts throughout the brain (Johnson, Stewart, & Smith, 2013). If major tracts become injured like, the corpus callosum, then it can affect interhemispheric communication. Once myelin is damaged the axon becomes vulnerable, and the mechanisms of nerve recovery are not well known. Myelin sheath recovery has been studied in hopes to proliferate the oligodendrocytes that make up for the atrophied myelin. Neurotoxic chemicals released at activation of macrophages which hinders the brains ability to proliferate myelin protein needed for myelin differentiation adequately. In the central nervous system myelin has mechanisms to recover. Neurogenesis is a naturally occurring recovery mechanism seen after brain injury. Understanding the time points in which brain recovery occurs is important for treatment of diffuse injuries that cannot be identified through some imaging techniques. To better understand critical timepoints of natural recovery after brain injury can allow further investigation for early intervention to promote adequate recovery.
ContributorsLiptow, Kristen Ashley (Author) / Neisewander, Janet (Thesis director) / Law, L. Matthew (Committee member) / School of Social and Behavioral Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
132317-Thumbnail Image.png
Description
British Neuroscientist Adrian Owen documents in his book Into the Grey Zone difficult cases of patients between a state of brain death and consciousness. His team collected evidence that sug- gested patients—presumed to be brain dead—were partially or, in some cases, fully conscious. The two culturally dominant metaphysical accounts of

British Neuroscientist Adrian Owen documents in his book Into the Grey Zone difficult cases of patients between a state of brain death and consciousness. His team collected evidence that sug- gested patients—presumed to be brain dead—were partially or, in some cases, fully conscious. The two culturally dominant metaphysical accounts of consciousness, Cartesian dualism and eliminative physicalism, are unable to explain the presence of consciousness in Owen’s cases. To better understand the consciousness present in Owen’s cases I argue we should look to Ned Block’s distinction between phenomenal and access consciousness.
ContributorsQuint, Elana (Author) / Karen, Taliaferro (Thesis director) / Jeff, Watson (Committee member) / Historical, Philosophical & Religious Studies (Contributor) / School of Civic & Economic Thought and Leadership (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132362-Thumbnail Image.png
Description
In the study of the human brain’s ability to multitask, there are two perspectives: concurrent multitasking (performing multiple tasks simultaneously) and sequential multitasking (switching between tasks). The goal of this study is to investigate the human brain’s ability to “multitask” with multiple demanding stimuli of approximately equal concentration, from an

In the study of the human brain’s ability to multitask, there are two perspectives: concurrent multitasking (performing multiple tasks simultaneously) and sequential multitasking (switching between tasks). The goal of this study is to investigate the human brain’s ability to “multitask” with multiple demanding stimuli of approximately equal concentration, from an electrophysiological perspective different than that of stimuli which don’t require full attention or exhibit impulsive multitasking responses. This study investigates the P3 component which has been experimentally proven to be associated with mental workload through information processing and cognitive function in visual and auditory tasks, where in the multitasking domain the greater attention elicited, the larger P3 waves are produced. This experiment compares the amplitude of the P3 component of individual stimulus presentation to that of multitasking trials, taking note of the brain workload. This study questions if the average wave amplitude in a multitasking ERP experiment will be the same as the grand average when performing the two tasks individually with respect to the P3 component. The hypothesis is that the P3 amplitude will be smaller in the multitasking trial than in the individual stimulus presentation, indicating that the brain is not actually concentrating on both tasks at once (sequential multitasking instead of concurrent) and that the brain is not focusing on each stimulus to the same degree when it was presented individually. Twenty undergraduate students at Barrett, the Honors College at Arizona State University (10 males and 10 females, with a mean age of 18.75 years, SD= 1.517) right handed, with normal or corrected visual acuity, English as first language, and no evidence of neurological compromise participated in the study. The experiment results revealed that one- hundred percent of participants undergo sequential multitasking in the presence of two demanding stimuli in the electrophysiological data, behavioral data, and subjective data. In this particular study, these findings indicate that the presence of additional demanding stimuli causes the workload of the brain to decrease as attention deviates in a bottleneck process to the multiple requisitions for focus, indicated by a reduced P3 voltage amplitude with the multitasking stimuli when compared to the independent. This study illustrates the feasible replication of P3 cognitive workload results for demanding stimuli, not only impulsive-response experiments, to suggest the brain’s tendency to undergo sequential multitasking when faced with multiple demanding stimuli. In brief, this study demonstrates that when higher cognitive processing is required to interpret and respond to the stimuli, the human brain results to sequential multitasking (task- switching, not concurrent multitasking) in the face of more challenging problems with each stimulus requiring a higher level of focus, workload, and attention.
ContributorsNeill, Ryan (Author) / Brewer, Gene (Thesis director) / Peter, Beate (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05