Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 6 of 6
Filtering by

Clear all filters

133734-Thumbnail Image.png
Description
Prior expectations can bias evaluative judgments of sensory information. We show that information about a performer's status can bias the evaluation of musical stimuli, reflected by differential activity of the ventromedial prefrontal cortex (vmPFC). Moreover, we demonstrate that decreased susceptibility to this confirmation bias is (a) accompanied by the recruitment

Prior expectations can bias evaluative judgments of sensory information. We show that information about a performer's status can bias the evaluation of musical stimuli, reflected by differential activity of the ventromedial prefrontal cortex (vmPFC). Moreover, we demonstrate that decreased susceptibility to this confirmation bias is (a) accompanied by the recruitment of and (b) correlated with the white-matter structure of the executive control network, particularly related to the dorsolateral prefrontal cortex (dlPFC). By using long-duration musical stimuli, we were able to track the initial biasing, subsequent perception, and ultimate evaluation of the stimuli, examining the full evolution of these biases over time. Our findings confirm the persistence of confirmation bias effects even when ample opportunity exists to gather information about true stimulus quality, and underline the importance of executive control in reducing bias.
ContributorsAydogan, Goekhan (Co-author, Committee member) / Flaig, Nicole (Co-author) / Larg, Edward W. (Co-author) / Margulis, Elizabeth Hellmuth (Co-author) / McClure, Samuel (Co-author, Thesis director) / Nagishetty Ravi, Srekar Krishna (Co-author) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133577-Thumbnail Image.png
Description
Egr3 is an immediate early gene transcription factor that shows genetic association with schizophrenia, and is found in decreased levels in the brains of schizophrenia patients. Schizophrenia patients also exhibit cognitive and memory deficits, both of which Egr3 has been shown to play a crucial role in. Additionally, high levels

Egr3 is an immediate early gene transcription factor that shows genetic association with schizophrenia, and is found in decreased levels in the brains of schizophrenia patients. Schizophrenia patients also exhibit cognitive and memory deficits, both of which Egr3 has been shown to play a crucial role in. Additionally, high levels of DNA damage are found in the brains of schizophrenia patients. A recent study has shown that DNA damage occurs as a result of normal physiological activity in neurons and is required for induction of gene expression of a subset of early response genes. Also, failure to repair this damage can lead to gene expression in a constitutive switched on state. Egr3 knockout (Egr3-/-) mice show deficits in hippocampal synaptic plasticity and memory. We were interested in characterizing downstream targets of EGR3 in the hippocampus. To determine these targets, electroconvulsive seizure (ECS) was carried out in Egr3 -/- versus wild type (WT) mice, and a microarray study was first done in our lab. ECS maximally stimulates Egr3 expression and we hypothesized that there would be gene targets that are differentially expressed between Egr3 -/- and WT mice that had been subjected to ECS. Two separate analyses of the microarray yielded 65 common genes that were determined as being differentially expressed between WT and Egr3 -/- mice after ECS. Further Ingenuity Pathway Analysis of these 65 genes indicated the Gadd45 signaling pathway to be the top canonical pathway, with the top four pathways all being associated with DNA damage or DNA repair. A literature survey was conducted for these 65 genes and their associated pathways, and 12 of the 65 genes were found to be involved in DNA damage response and/or DNA repair. Validation of differential expression was then conducted for each of the 12 genes, in both the original male cohort used for microarray studies and an additional female cohort of mice. 7 of these genes validated through quantitative real time PCR (qRT-PCR) in the original male cohort used for the microarray study, and 4 validated in both the original male cohort and an independent female cohort. Bioinformatics analysis yielded predicted EGR3 binding sites in promoters of these 12 genes, validating their role as potential transcription targets of EGR3. These data reveal EGR3 to be a novel regulator of DNA repair. Further studies will be needed to characterize the role of Egr3 in repairing DNA damage.
ContributorsBarkatullah, Arhem Fatima (Author) / Newbern, Jason (Thesis director) / Gallitano, Amelia (Committee member) / Marballi, Ketan (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133599-Thumbnail Image.png
Description
The goal of my study is to test the overarching hypothesis that art therapy is effective because it targets emotional dysregulation that often accompanies significant health stressors. By reducing the salience of illness-related stressors, art therapy may improve overall mood and recovery, particularly in patients with cancer. After consulting the

The goal of my study is to test the overarching hypothesis that art therapy is effective because it targets emotional dysregulation that often accompanies significant health stressors. By reducing the salience of illness-related stressors, art therapy may improve overall mood and recovery, particularly in patients with cancer. After consulting the primary literature and review papers to develop psychological and neural mechanisms at work in art therapy, I created a hypothetical experimental procedure to test these hypotheses to explain why art therapy is helpful to patients with chronic illness. Studies found that art therapy stimulates activity of multiple brain regions involved in memory retrieval and the arousal of emotions. I hypothesize that patients with chronic illness have a reduced capacity for emotion regulation, or difficulty recognizing, expressing or altering illness-related emotions (Gross & Barrett, 2011). Further I hypothesize that art therapy improves mood and therapeutic outcomes by acting on the emotion-processing regions of the limbic system, and thereby facilitating the healthy expression of emotion, emotional processing, and reappraisal. More mechanistically, I propose art therapy reduces the perception or salience of stressors by reducing amygdala activity leading to decreased activation of the hypothalamic-pituitary-adrenal (HPA) axis. The art therapy literature and my hypothesis about its mechanisms of action became the basis of my proposed study. To assess the effectiveness of art therapy in alleviating symptoms of chronic disease, I am specifically targeting patients with cancer who exhibit a lack of emotional regulation. Saliva is collected 3 times a week on the day of intervention: morning after waking, afternoon, and evening. Stress levels are tested using one-hour art therapy sessions over the course of 3 months. The Perceived Stress Scale (PSS) assesses an individual's perceived stress and feelings in past and present situations, for the control and intervention group. To measure improvement in overall mood, 10 one-hour art sessions are performed on patients over 10 weeks. A one-hour discussion analyzing the participants' artwork follows each art session. The Spielberger State-Trait Anxiety Inventory (STAI) assesses overall mood for the intervention and control groups. I created rationale and predictions based on the intended results of each experiment.
ContributorsAluri, Bineetha C. (Author) / Orchinik, Miles (Thesis director) / Davis, Mary (Committee member) / Essary, Alison (Committee member) / School of Life Sciences (Contributor) / School for the Science of Health Care Delivery (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133469-Thumbnail Image.png
Description
Vagal Nerve Stimulation (VNS) has been shown to be a promising therapeutic technique in treating many neurological diseases, including epilepsy, stroke, traumatic brain injury, and migraine headache. The mechanisms by which VNS acts, however, are not fully understood but may involve changes in cerebral blood flow. The vagus nerve plays

Vagal Nerve Stimulation (VNS) has been shown to be a promising therapeutic technique in treating many neurological diseases, including epilepsy, stroke, traumatic brain injury, and migraine headache. The mechanisms by which VNS acts, however, are not fully understood but may involve changes in cerebral blood flow. The vagus nerve plays a significant role in the regulation of heart rate and cerebral blood flow that are altered during VNS. Here, we examined the effects of acute vagal nerve stimulation on both heart rate and cerebral blood flow. Laser Speckle Contrast Analysis (LASCA) was used to analyze the cerebral blood flow of male Long\u2014Evans rats. Results showed two distinct patterns of responses whereby animals either experienced a mild or severe decrease in heart rate during VNS. Further, animals that displayed mild heart rate decreases showed an increase in cerebral blood flow that persisted beyond VNS. Animals that displayed severe decreases showed a transient decrease in cerebral blood flow followed by an increase that was greater than that observed in mild animals but progressively decreased after VNS. The results suggest two distinct patterns of changes in both heart rate and cerebral blood flow that may be related to the intensity of VNS.
ContributorsHillebrand, Peter Timothy (Author) / Kleim, Jeffrey (Thesis director) / Helms Tillery, Stephen (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
Architecture has an ability to shape us and focus on forms and efficiency yet frequently ignores relationships between the form and cognition. This negligence creates lost opportunities for creating a link between action and perception, embodiment and aesthetics, imagination and empathy. Architecture is frequently not empathetic, lacking meaning to far

Architecture has an ability to shape us and focus on forms and efficiency yet frequently ignores relationships between the form and cognition. This negligence creates lost opportunities for creating a link between action and perception, embodiment and aesthetics, imagination and empathy. Architecture is frequently not empathetic, lacking meaning to far too many people. Considering the application of neuroscience in architecture to nurture psychological and physiological response to architecture may be key to fostering healthy and positive relationships with space. Another connection that comes up in neuro-scientific research is how creativity plays into design and the understanding of design. Often, creativity is accompanied by metaphor, and neuroscientist Ramachandran is particularly interested in this. A curious phenomenon he has focused on is synaesthesia, Synaesthesia is a Greek-based word, syn meaning joined and aisthesis meaning sensation. It occurs when "Stimulation of one sensory modality automatically triggers perception in a second modality in the absence of any direct stimulation to this modality." Further, the study and application of synaesthetic properties can help achieve this goal. Through the application of neuro-scientific research directed towards architecture, "Neuroarchitecture" is a possible tool that can create architecture that invokes positive responses in occupants. Through the consideration of building elements, natural forces, equal understanding, and synaesthesia, "neuroarchitecture" can be successful. Thus, with the consideration of neuroscience and synaesthesia there is a possibility of understanding what creates the certain emotions that one experiences in a space, and why people like certain places more than others. In a lecture covering this topic at Arizona State University's Design School, designer Ellen Lupton showed graphic visualizations of musical synaesthesia. Bird calls were translated into exceptionally fluid ribbons of moving color that ebbed and crashed with the rise and fall of the bird call. If these experiences can be expressed through digital art, then there may be a way to express them through architecture. The project takes focus on the architecture of flux, limbo, and threshold, within the specific context of the airport. The airport is a one of a kind architecture. There is little to no other architecture that serves as a threshold from one city, state, and country to another, that is full of people from all parts of the world, and is a space of limbo. In the flux of the airport, the individual feels a multitude of emotions, joys, sadness, frustration, and stresses. Studying circulation, movement of both the inhabitant and the architecture of the airport, the project will rigorously question if architecture can be scientifically formulated to create mental effects or if they are a result of atmospheric qualities.
ContributorsPniak, Nikola (Author) / Rocchi, Elena (Thesis director) / Taylor, Christopher (Committee member) / Hejduk, Renata (Committee member) / The Design School (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134045-Thumbnail Image.png
Description
The mammalian target of rapamycin (mTOR) is integral in regulating cell growth as it maintains a homeostatic balance of proteins by modulating their synthesis and degradation. In the brain, mTOR regulates protein-driven neuroplastic changes that modulate learning and memory. Nevertheless, upregulation of mTOR can cause detrimental effect in spatial memory

The mammalian target of rapamycin (mTOR) is integral in regulating cell growth as it maintains a homeostatic balance of proteins by modulating their synthesis and degradation. In the brain, mTOR regulates protein-driven neuroplastic changes that modulate learning and memory. Nevertheless, upregulation of mTOR can cause detrimental effect in spatial memory and synaptic plasticity. The proline-rich Akt-substrate 40 kDa (PRAS40) is a key negative regulator of mTOR, as it binds mTOR and directly reduces its activity. To investigate the role of PRAS40 on learning and memory, we generated a transgenic mouse model in which we used the tetracycline-off system to regulate the expression of PRAS40 specifically in neurons of the hippocampus. After induction, we found that mice overexpressing PRAS40 performed better than control mice in the Morris Water Maze behavioral test. We further show that the improvement in memory was associated with a decrease in mTOR signaling, an increase in dendritic spines in hippocampal pyramidal neurons, and an increase in the levels of brain-derived neurotrophic factor (BDNF), a neurotrophin necessary for learning and memory. This is the first evidence that shows that increasing PRAS40 in the mouse brain enhances learning and memory deficits.
ContributorsSarette, Patrick William (Author) / Oddo, Salvatore (Thesis director) / Caccamo, Antonella (Committee member) / Kelleher, Raymond (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05