Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

135402-Thumbnail Image.png
Description
It is unknown which regions of the brain are most or least active for golfers during a peak performance state (Flow State or "The Zone") on the putting green. To address this issue, electroencephalographic (EEG) recordings were taken on 10 elite golfers while they performed a putting drill consisting of

It is unknown which regions of the brain are most or least active for golfers during a peak performance state (Flow State or "The Zone") on the putting green. To address this issue, electroencephalographic (EEG) recordings were taken on 10 elite golfers while they performed a putting drill consisting of hitting nine putts spaced uniformly around a hole each five feet away. Data was collected at three time periods, before, during and after the putt. Galvanic Skin Response (GSR) measurements were also recorded on each subject. Three of the subjects performed a visualization of the same putting drill and their brain waves and GSR were recorded and then compared with their actual performance of the drill. EEG data in the Theta (4 \u2014 7 Hz) bandwidth and Alpha (7 \u2014 13 Hz) bandwidth in 11 different locations across the head were analyzed. Relative power spectrum was used to quantify the data. From the results, it was found that there is a higher magnitude of power in both the theta and alpha bandwidths for a missed putt in comparison to a made putt (p<0.05). It was also found that there is a higher average power in the right hemisphere for made putts. There was not a higher power in the occipital region of the brain nor was there a lower power level in the frontal cortical region during made putts. The hypothesis that there would be a difference between the means of the power level in performance compared to visualization techniques was also supported.
ContributorsCarpenter, Andrea (Co-author) / Hool, Nicholas (Co-author) / Muthuswamy, Jitendran (Thesis director) / Crews, Debbie (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description

This paper provides a multidisciplinary analysis of the relationship between beauty and addiction, with a focus on the emerging field of neuroaesthetics. Neuroaesthetics investigates the neural mechanisms that underlie aesthetic experiences and how the brain cognitively processes beauty. Since there is a biological foundation of this report, I will predominantly

This paper provides a multidisciplinary analysis of the relationship between beauty and addiction, with a focus on the emerging field of neuroaesthetics. Neuroaesthetics investigates the neural mechanisms that underlie aesthetic experiences and how the brain cognitively processes beauty. Since there is a biological foundation of this report, I will predominantly discuss neuroanatomy, neurological studies, and the overlap in neural circuitry between beauty and addiction. In addition, I will discuss the philosophical roots of beauty, as well as the environmental elements involved. Chapter 1 begins by explaining the history of beauty and its importance. I discuss the main constituents of beauty and differentiate between key terms involved in the beauty experience. In order to understand the link between beauty and addiction, it is essential to have a knowledgeable background on what beauty is. Next, I discuss the neurobiology of addiction. The main component of this chapter involves the mesolimbic and mesocortical reward pathways. I also describe neuroanatomical terms involved in addiction. The last chapter considers the implications of neuroaesthetics in various studies, which primarily involve the use of fMRIs. I discuss the sensory evaluations of beauty and the brain regions involved in the beauty experience. From this, I found that the experience of beauty activates these main brain regions: PFC, amygdala, striatum, NAcc, cingulate, VTA, and most remarkably, field A1 of the mOFC. By combining the neurological studies with studies of aesthetics, I reached the conclusion that there is an overlap in the neural pathways during the experience of beauty and during addiction. Although it is necessary for further research to be conducted to properly declare this, I discovered that the pursuit of beauty can lead to addictive behaviors, as the reward centers of the brain are activated by aesthetic experiences.

ContributorsFarrell, Natalie (Author) / de Alcantara, Christiane Fontinha (Thesis director) / Conrad, Cheryl (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of Marketing (Contributor)
Created2023-05