Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

Description

For my thesis, I conducted a study on a healthy pediatric cohort to investigate how DNA methylation of genes related to myelin may predict total white matter volume in a healthy pediatric cohort. The relatively new field of neuroimaging epigenetics investigates how methylation of genes in peripheral tissue samples is

For my thesis, I conducted a study on a healthy pediatric cohort to investigate how DNA methylation of genes related to myelin may predict total white matter volume in a healthy pediatric cohort. The relatively new field of neuroimaging epigenetics investigates how methylation of genes in peripheral tissue samples is related to certain structural or functional features of the brain, as measured by neuroimaging data. Research has already demonstrated that methylation of genes in peripheral tissues is related to a variety of brain disorders. We hypothesized that methylation of myelin-related genes as measured in saliva samples would predict total white matter volume in a healthy pediatric cohort. After processing DNA methylation data from saliva samples from participants, multiple linear regressions were ran to determine if DNA methylation of myelin related genes was related to total white matter volume, as measured by data from structural MRIs. Results showed that these genes, which included MOG, MBP, and MYRF, significantly predicted total white matter volume. Two genes that were significant in our results have been previously shown to produce proteins that are essential to the structure of myelin.

ContributorsSpencer, Sophie (Author) / Lewis, Candace (Thesis director) / Braden, Blair (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / College of Integrative Sciences and Arts (Contributor)
Created2023-05
Description
Immediate early genes (IEGs) are the first set of genes to be transcribed in a cell in response to stimuli; their expression is quick and is not protein synthesis dependent. Neurons are activated in response to external stimuli, causing a rapid increase in IEG expression in the brain. IEG proteins

Immediate early genes (IEGs) are the first set of genes to be transcribed in a cell in response to stimuli; their expression is quick and is not protein synthesis dependent. Neurons are activated in response to external stimuli, causing a rapid increase in IEG expression in the brain. IEG proteins go on to affect fundamental neurobiological processes that are known to be dysfunctional in patients with psychiatric disorders, and therefore IEGs have been connected to the pathogenesis of schizophrenia. Early growth response (Egr) genes are immediate early gene transcription factors (IEG-TFs) that are expressed in response to an altered environment. The IEG-TFs, early growth response 1 (EGR1) and early growth response 3 (EGR3) are necessary for processes such as memory and synaptic plasticity; lack of function in these genes causes dysfunction or disruption of these processes. We wanted to observe if increasing the function of Egrs by overexpressing them will lead to improved memory. To help further understand how behavior is affected by the overexpression (O/E) of Egr1 in response to stimuli, the AAV-ESARE-Egr1 virus was developed to be injected in the hippocampus of mice. In the hippocampus of wild-type (WT) mice, cells that are active endogenously express Egr1. The virus was created using the synaptic activity-response element (SARE), an element discovered on the promoter of the IEG activity-regulated cytoskeleton-associated (Arc) gene by our collaborators in Japan. Using an “enhanced” form of SARE (ESARE), our newly created virus acts to overexpress Egr1 only in response to activity in the hippocampus; we can then observe if the behavioral processes associated with Egr1 will improve. First, this project aims to validate that the AAV-ESARE-Egr1 virus is increasing Egr1 expression in the active hippocampal dentate gyrus (DG) granule cells of WT mice, and only in response to activity. The activity is in the form of a physiological stimulus, environmental enrichment (EE) and a non-physiological stimulus, electroconvulsive seizures (ECS). After confirming these characteristics of AAV-ESARE-Egr1 we can then use it to observe if EGR1 O/E improves the memory of mice.
ContributorsWallace, Sophie (Author) / Lewis, Candace (Thesis director) / Gallitano, Amelia (Committee member) / Barrett, The Honors College (Contributor) / College of Integrative Sciences and Arts (Contributor)
Created2024-05