Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

137328-Thumbnail Image.png
Description
The field of biologic research is particularly concerned with understanding nature's complex dynamics. From deducing anatomical structures to studying behavioral patterns, evolutionary theory has developed greatly beyond the simple notions proposed by Charles Darwin. However, because it rarely considers the concept of complexity, modern evolutionary theory retains some descriptive weakness.

The field of biologic research is particularly concerned with understanding nature's complex dynamics. From deducing anatomical structures to studying behavioral patterns, evolutionary theory has developed greatly beyond the simple notions proposed by Charles Darwin. However, because it rarely considers the concept of complexity, modern evolutionary theory retains some descriptive weakness. This project represents an explorative approach for considering complexity and whether it plays an active role in the development of biotic systems. A novel theoretical framework, titled the Genesis Mechanism, was formulated reconsidering the major tenets of evolutionary theory to include complexity as a universal tendency. Within this framework, a phenomenon, referred to as "social transitioning," occurs between higher orders of complexity. Several potential properties of social transitions were proposed and analyzed in order to validate the theoretical concepts proposed within the Genesis Mechanism. The successful results obtained through this project's completion help demonstrate the scientific necessity for understanding complexity from a more fundamental, biologic standpoint.
ContributorsMcAuliffe, Jacob (Author) / Laubichler, Manfred (Thesis director) / Armendt, Brad (Committee member) / Barrett, The Honors College (Contributor)
Created2013-05