Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 97
Filtering by

Clear all filters

Description
The importance of efficient design and development teams in in 21st century is evident after the compressive literate review was performed to digest various aspects of benefits and foundation of teamwork. Although teamwork may have variety of applications in many different industries, the new emerging biomedical engineering is growing significantly

The importance of efficient design and development teams in in 21st century is evident after the compressive literate review was performed to digest various aspects of benefits and foundation of teamwork. Although teamwork may have variety of applications in many different industries, the new emerging biomedical engineering is growing significantly using principles of teamwork. Studying attributes and mechanism of creating successful biomedical engineering teams may even contribute more to the fast paste growth of this industry. In comprehensive literate review performed, general importance of teamwork was studied. Also specific hard and soft attributes which may contribute to teamwork was studied. Currently, there are number of general assessment tools which assists managements in industry and academia to systematically bring qualified people together to flourish their talents and skills as members of a biomedical engineering teams. These assessment tools, although are useful, but are not comprehensive, incorporating literature review attributes, and also doesn't not contain student perspective who have experience as being part of a design and development team. Although there are many scientific researches and papers designated to this matter, but there is no study which purposefully studies development of an assessment tool which is designated to biomedical engineering workforce and is constructed of both literature, current assessment tools, and also student perspective. It is hypothesized that a more comprehensive composite assessment tool that incorporate both soft and hard team attributes from a combined professional and student perspective could be implemented in the development of successful Biomedical Engineering Design and Development teams and subsequently used in 21st century workforce.
ContributorsAfzalian Naini, Nima (Author) / Pizziconi, Vincent (Thesis director) / Ankeny, Casey (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135402-Thumbnail Image.png
Description
It is unknown which regions of the brain are most or least active for golfers during a peak performance state (Flow State or "The Zone") on the putting green. To address this issue, electroencephalographic (EEG) recordings were taken on 10 elite golfers while they performed a putting drill consisting of

It is unknown which regions of the brain are most or least active for golfers during a peak performance state (Flow State or "The Zone") on the putting green. To address this issue, electroencephalographic (EEG) recordings were taken on 10 elite golfers while they performed a putting drill consisting of hitting nine putts spaced uniformly around a hole each five feet away. Data was collected at three time periods, before, during and after the putt. Galvanic Skin Response (GSR) measurements were also recorded on each subject. Three of the subjects performed a visualization of the same putting drill and their brain waves and GSR were recorded and then compared with their actual performance of the drill. EEG data in the Theta (4 \u2014 7 Hz) bandwidth and Alpha (7 \u2014 13 Hz) bandwidth in 11 different locations across the head were analyzed. Relative power spectrum was used to quantify the data. From the results, it was found that there is a higher magnitude of power in both the theta and alpha bandwidths for a missed putt in comparison to a made putt (p<0.05). It was also found that there is a higher average power in the right hemisphere for made putts. There was not a higher power in the occipital region of the brain nor was there a lower power level in the frontal cortical region during made putts. The hypothesis that there would be a difference between the means of the power level in performance compared to visualization techniques was also supported.
ContributorsCarpenter, Andrea (Co-author) / Hool, Nicholas (Co-author) / Muthuswamy, Jitendran (Thesis director) / Crews, Debbie (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
Abstract
The aim of the research performed was to increase research potential in the field of cell stimulation by developing a method to adhere human neural progenitor cells (hNPC’s) to a sterilized stretchable microelectrode array (SMEA). The two primary objectives of our research were to develop methods of sterilizing the polydimethylsiloxane

Abstract
The aim of the research performed was to increase research potential in the field of cell stimulation by developing a method to adhere human neural progenitor cells (hNPC’s) to a sterilized stretchable microelectrode array (SMEA). The two primary objectives of our research were to develop methods of sterilizing the polydimethylsiloxane (PDMS) substrate being used for the SMEA, and to derive a functional procedure for adhering hNPC’s to the PDMS. The proven method of sterilization was to plasma treat the sample and then soak it in 70% ethanol for one hour. The most successful method for cell adhesion was plasma treating the PDMS, followed by treating the surface of the PDMS with 0.01 mg/mL poly-l-lysine (PLL) and 3 µg/cm2 laminin. The development of these methods was an iterative process; as the methods were tested, any problems found with the method were corrected for the next round of testing until a final method was confirmed. Moving forward, the findings will allow for cell behavior to be researched in a unique fashion to better understand the response of adherent cells to physical stimulation by measuring changes in their electrical activity.
ContributorsBridgers, Carson (Co-author) / Peterson, Mara (Co-author) / Stabenfeldt, Sarah (Thesis director) / Graudejus, Oliver (Committee member) / Harrington Bioengineering Program (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
Females are highly vulnerable to the effects of methamphetamine, and understanding the mechanisms of this is critical to addressing methamphetamine use as a public health issue. Hormones may play a role in methamphetamine sensitivity; thus, the fluctuation of various endogenous peptides during the postpartum experience is of interest. This honors

Females are highly vulnerable to the effects of methamphetamine, and understanding the mechanisms of this is critical to addressing methamphetamine use as a public health issue. Hormones may play a role in methamphetamine sensitivity; thus, the fluctuation of various endogenous peptides during the postpartum experience is of interest. This honors thesis project explored the relation between anxiety-like behavior, as measured by activity in an open field, and conditioned place preference to methamphetamine in female versus male rats. The behavior of postpartum as well as virgin female rats was compared to that of male rats. There was not a significant difference between males and females in conditioned place preference to methamphetamine, yet females showed higher locomotor activity in response to the drug as well as increased anxiety-like behavior in open field testing as compared to males. Further study is vital to comprehending the complex mechanisms of sex differences in methamphetamine addiction.
ContributorsBaker, Allison Nicole (Author) / Olive, M. Foster (Thesis director) / Presson, Clark (Committee member) / Hansen, Whitney (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136778-Thumbnail Image.png
Description
The Honors Thesis involved the use of vertically-aligned, piezoelectric nanowire sensor arrays configured by Dr. Henry A. Sodano and Dr. Aneesh Koka from the University of Florida, in order to acquire acceleration data. Originally, the project was focused on interfacing and calibrating the barium titanate (BaTio3) sensors to measure wall

The Honors Thesis involved the use of vertically-aligned, piezoelectric nanowire sensor arrays configured by Dr. Henry A. Sodano and Dr. Aneesh Koka from the University of Florida, in order to acquire acceleration data. Originally, the project was focused on interfacing and calibrating the barium titanate (BaTio3) sensors to measure wall shear stress, a fluid dynamic characteristic. In order to gain an understanding of these novel piezoelectric sensors, the experiments performed by Sodano and Koka were to be investigated, replicated, and results reproduced. After initial trial phases, signals failed to be consistently measured from the sensors and the project's emphasis was re-defined. The outlined goals were 1) to re-design the initial system used for signal acquisition, 2) test the improved signal acquisition system, 3) successfully measure output signals from the BaTiO3 nanowire sensors, and 4) determine the cause for inconsistent signal measurements from the piezoelectric nanawire sensors. Following a detailed review of the previous experimental procedures and the initial signal acquisition system, an improved acquisition system was designed and its expected behavior was tested and verified. Despite the introduction of the improved acquisition system, voltage outputs were unable to be measured as a function of shaker table acceleration. It was impossible to verify the effect of the improved signal acquisition system on the measured BaTiO3 nanowire sensor output. Based on an analysis of data collected using a commercial 3-axis acceleromoeter, it is hypothesized that the BaTiO3 nanowire sensors were broken after the first experimental trial due to an excessively applied force from an external source (i.e. shaker table, improper handling during experimentation, and/or improper handling during transportation).
ContributorsThomas, Jonah (Author) / Frakes, David (Thesis director) / LaBelle, Jeffrey (Contributor) / Barrett, The Honors College (Contributor)
Created2014-05
136798-Thumbnail Image.png
Description
The purpose of this project was to examine the viability of protein biomarkers in pre-symptomatic detection of lung cancer. Regular screening has been shown to vastly improve patient survival outcome. Lung cancer currently has the highest occurrence and mortality of all cancers and so a means of screening would be

The purpose of this project was to examine the viability of protein biomarkers in pre-symptomatic detection of lung cancer. Regular screening has been shown to vastly improve patient survival outcome. Lung cancer currently has the highest occurrence and mortality of all cancers and so a means of screening would be highly beneficial. In this research, the biomarker neuron-specific enolase (Enolase-2, eno2), a marker of small-cell lung cancer, was detected at varying concentrations using electrochemical impedance spectroscopy in order to develop a mathematical model of predicting protein expression based on a measured impedance value at a determined optimum frequency. The extent of protein expression would indicate the possibility of the patient having small-cell lung cancer. The optimum frequency was found to be 459 Hz, and the mathematical model to determine eno2 concentration based on impedance was found to be y = 40.246x + 719.5 with an R2 value of 0.82237. These results suggest that this approach could provide an option for the development of small-cell lung cancer screening utilizing electrochemical technology.
ContributorsEvans, William Ian (Author) / LaBelle, Jeffrey (Thesis director) / Spano, Mark (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
136445-Thumbnail Image.png
Description
Environmental and genetic factors contribute to schizophrenia etiology, yet few studies have demonstrated how environmental stimuli impact genes associated with the disorder. Immediate early genes (IEGs) are of great interest to schizophrenia research because they are activated in response to physiological stress from the environment, and subsequently regulate the expression

Environmental and genetic factors contribute to schizophrenia etiology, yet few studies have demonstrated how environmental stimuli impact genes associated with the disorder. Immediate early genes (IEGs) are of great interest to schizophrenia research because they are activated in response to physiological stress from the environment, and subsequently regulate the expression of downstream genes that are essential to neuropsychiatric function. An IEG, early growth response 3 (EGR3) has been identified as a main gene involved in a network of transcription factors implicated in schizophrenia susceptibility. The serotonin 2A receptor (5-HT2AR) seems to play an important role in schizophrenia and the dysfunction of the 5-HT2AR encoding gene, HTR2A, within the prefrontal cortex (PFC) contributes to multiple psychiatric illnesses including schizophrenia. EGR3's role as a transcription factor that is activated by environmental stimuli suggests it may regulate Htr2a transcription in response to physiological stress, thus affecting 5-HT2AR function in the prefrontal cortex (PFC). The aim of this study was to examine the relationship between Egr3 activation and Htr2a expression after an environmental stimulus. Sleep deprivation is an acute physiological stressor that activates Egr3. Therefore to examine the relationship between Egr3 and Htr2a expression after an acute stress, wild type and Egr3 knockout mice that express EGFP under the control of the Htr2a promoter were sleep deprived for 8 hours. We used immunohistochemistry to determine the location and density of Htr2a-EGFP expression after sleep deprivation and found that Htr2a-EGFP expression was not affected by sex or subregions of the PFC. Additionally, Htr2a-EGFP expression was not affected by the loss of Egr3 or sleep deprivation within the PFC. The LPFC subregions, layers V and VI showed significantly more Htr2a-EGFP expression than layers I-III in all animals for both sleep deprivation and control conditions. Possible explanations for the lack of significant effects in this study may be the limited sample size or possible biological abnormalities in the Htr2a-EGFP mice. Nonetheless, we did successfully visualize the anatomical distribution of Htr2a in the prefrontal cortex via immunohistochemical staining. This study and future studies will provide insight into how Egr3 activation affects Htr2a expression in the PFC and how physiological stress from the environment can alter candidate schizophrenia gene function.
ContributorsSabatino, Alissa Marie (Author) / Gallitano, Amelia (Thesis director) / Hruschka, Daniel (Thesis director) / Maple, Amanda (Committee member) / Barrett, The Honors College (Contributor)
Created2014-05
136475-Thumbnail Image.png
Description
Epilepsy affects numerous people around the world and is characterized by recurring seizures, prompting the ability to predict them so precautionary measures may be employed. One promising algorithm extracts spatiotemporal correlation based features from intracranial electroencephalography signals for use with support vector machines. The robustness of this methodology is tested

Epilepsy affects numerous people around the world and is characterized by recurring seizures, prompting the ability to predict them so precautionary measures may be employed. One promising algorithm extracts spatiotemporal correlation based features from intracranial electroencephalography signals for use with support vector machines. The robustness of this methodology is tested through a sensitivity analysis. Doing so also provides insight about how to construct more effective feature vectors.
ContributorsMa, Owen (Author) / Bliss, Daniel (Thesis director) / Berisha, Visar (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2015-05
136822-Thumbnail Image.png
Description
Scientists, lawyers, and bioethicists have pondered the impact of scientifically deterministic evidence on a judge or jury when deciding the sentence of a criminal. Though the impact may be one that relieves the amount of personal guilt on the part of the criminal, this evidence may also be the very

Scientists, lawyers, and bioethicists have pondered the impact of scientifically deterministic evidence on a judge or jury when deciding the sentence of a criminal. Though the impact may be one that relieves the amount of personal guilt on the part of the criminal, this evidence may also be the very reason that a judge or jury punishes more strongly, suggesting that this type of evidence may be a double-edged sword. 118 participants were shown three films of fictional sentencing hearings. All three films introduced scientifically deterministic evidence, and participants were asked to recommend a prison sentence. Each hearing portrayed a different criminal with different neurological conditions, a different crime, and a different extent of argumentation during closing arguments about the scientifically deterministic evidence. Though the argumentation from the prosecution and the defense did not affect sentencing, the interaction of type of crime and neurological condition did.
ContributorsMeschkow, Alisha Sadie (Author) / Schweitzer, Nicholas (Thesis director) / Robert, Jason (Committee member) / Patten, K. Jakob (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2014-05
136843-Thumbnail Image.png
Description
An introduction to neuroscientific thought aimed at an audience that is not educated in biology. Meant to be readable and easily understood by anyone with a high school education. The first section is completed in its entirety, with outlines for the proposed final sections to be completed over the next

An introduction to neuroscientific thought aimed at an audience that is not educated in biology. Meant to be readable and easily understood by anyone with a high school education. The first section is completed in its entirety, with outlines for the proposed final sections to be completed over the next few years.
ContributorsNelson, Nicholas Alan (Author) / Olive, M. Foster (Thesis director) / Brewer, Gene (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor)
Created2014-05