Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

Description
The engineers of the future are currently in the process of earning their degrees and certifications from engineering programs guided by ABET accreditations. ABET, the Accreditation Board for Engineering and Technology, is the voice of reason for the development of engineering programs. Aspiring engineers desire institutions that follow ABET Standards

The engineers of the future are currently in the process of earning their degrees and certifications from engineering programs guided by ABET accreditations. ABET, the Accreditation Board for Engineering and Technology, is the voice of reason for the development of engineering programs. Aspiring engineers desire institutions that follow ABET Standards to ensure that their education meets the expectations of industry partners and researchers. However, these standards have not been drastically altered in years to reflect the changing needs of industry. With the advancement of technology in the last two decades, old school engineering and its application is becoming less common.

Science policy and curriculum go hand in. The future engineers are taught hand calculations, lab testing for field work parallels, and methodologies based on the written policies set forth decades ago. Technology today is rapidly changing, and engineering education is struggling to make changes to keep up with these technology advancements. In today’s world, technology drives invention and innovation, whereas some argue it is thought and curiosity. Engineering programs are taking a toll regardless of the point of view. Education is not made to keep up with current societal needs.

This paper a provides an overview of the history of engineering, curriculum standards for engineering programs, an analysis of engineering programs at top universities and large universities alongside student experiences available to engineers. The ideas offered are no means the exact solution; rather policymakers and STEM education stakeholder may find the ideas shared helpful and use them as a catalyst for change.
ContributorsMinutello, Amanda Gabrielle (Author) / Loughman, Joshua (Thesis director) / Huerta, Mark (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
132377-Thumbnail Image.png
Description
Educational institutions are in a unique position to take advantage of computers and software in new, innovative ways. The Mechanics Project at Arizona State University has done an exceptional job integrating many new ways of engaging students and providing resources that can help them learn course material in a way

Educational institutions are in a unique position to take advantage of computers and software in new, innovative ways. The Mechanics Project at Arizona State University has done an exceptional job integrating many new ways of engaging students and providing resources that can help them learn course material in a way that they can understand. However, there is still very little research on how to best compose multimedia content for student use.

This project aims to determine what students struggle with in these courses and develop multimedia content to support their education in Dynamics specifically.
Created2019-05
131645-Thumbnail Image.png
Description
This thesis is part of a larger research project, conducted by Elizabeth Stallings Young, which aims to improve understanding about the factors controlling the process of MIDP and the interaction between the biochemical reactions and the hydrological properties of soils treated with MIDP. Microbially Induced Desaturation and Precipitation (MIDP) is

This thesis is part of a larger research project, conducted by Elizabeth Stallings Young, which aims to improve understanding about the factors controlling the process of MIDP and the interaction between the biochemical reactions and the hydrological properties of soils treated with MIDP. Microbially Induced Desaturation and Precipitation (MIDP) is a bio-geotechnical process by which biogenic gas production and calcite mineral bio-cementation are induced in the pore space between the soil particles, which can mitigate earthquake induced liquefaction (Kavazanjian et al. 2015). In this process substrates are injected which stimulate indigenous nitrate reducing bacteria to produce nitrogen and carbon dioxide gas, while precipitating calcium carbonate minerals. The biogenic gas production has been shown to dampen pore pressure build up under dynamic loading conditions and significantly increase liquefaction resistance (Okamura and Soga 2006), while the precipitation of calcium carbonate minerals cements adjacent granular particles together. The objective of this thesis was to analyze the recorded pore pressure development as a result of biogenic gas formation and migration, over the entire two-dimensional flow field, by generating dynamic pressure contour plots, using MATLAB and ImageJ software. The experiment was run in a mesoscale tank that was approximately 114 cm tall, 114 cm wide and 5.25 cm thick. Substrate was flushed through the soil body and the denitrifying reaction occurred, producing gas and correspondingly, pressure. The pressure across the tank was recorded with pore pressure sensors and was loaded into a datalogger. This time sensitive data file was loaded into a MATLAB script, MIDPCountourGen.m, to create pressure contours for the tank. The results from this thesis include the creation of MIDPContourGen.m and a corresponding How-To Guide and pore pressure contours for the F60 tank. This thesis concluded that the MIDP reaction takes a relatively short amount of time and that the residual pressure in the tank after the water flush on day 17 offers a proof of effect of the MIDP reaction.
ContributorsCoppinger, Kristina Marie (Author) / van Paassen, Leon (Thesis director) / Kavazanjian, Edward (Committee member) / Stallings-Young, Elizabeth (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05