Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

134317-Thumbnail Image.png
Description
Social media is used by people every day to discuss the nuances of their lives. Major League Baseball (MLB) is a popular sport in the United States, and as such has generated a great deal of activity on Twitter. As fantasy baseball continues to grow in popularity, so does the

Social media is used by people every day to discuss the nuances of their lives. Major League Baseball (MLB) is a popular sport in the United States, and as such has generated a great deal of activity on Twitter. As fantasy baseball continues to grow in popularity, so does the research into better algorithms for picking players. Most of the research done in this area focuses on improving the prediction of a player's individual performance. However, the crowd-sourcing power afforded by social media may enable more informed predictions about players' performances. Players are chosen by popularity and personal preferences by most amateur gamblers. While some of these trends (particularly the long-term ones) are captured by ranking systems, this research was focused on predicting the daily spikes in popularity (and therefore price or draft order) by comparing the number of mentions that the player received on Twitter compared to their previous mentions. In doing so, it was demonstrated that improved fantasy baseball predictions can be made through leveraging social media data.
ContributorsRuskin, Lewis John (Author) / Liu, Huan (Thesis director) / Montgomery, Douglas (Committee member) / Morstatter, Fred (Committee member) / Industrial, Systems (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133143-Thumbnail Image.png
Description
The prevalence of bots, or automated accounts, on social media is a well-known problem. Some of the ways bots harm social media users include, but are not limited to, spreading misinformation, influencing topic discussions, and dispersing harmful links. Bots have affected the field of disaster relief on social media as

The prevalence of bots, or automated accounts, on social media is a well-known problem. Some of the ways bots harm social media users include, but are not limited to, spreading misinformation, influencing topic discussions, and dispersing harmful links. Bots have affected the field of disaster relief on social media as well. These bots cause problems such as preventing rescuers from determining credible calls for help, spreading fake news and other malicious content, and generating large amounts of content which burdens rescuers attempting to provide aid in the aftermath of disasters. To address these problems, this research seeks to detect bots participating in disaster event related discussions and increase the recall, or number of bots removed from the network, of Twitter bot detection methods. The removal of these bots will also prevent human users from accidentally interacting with these bot accounts and being manipulated by them. To accomplish this goal, an existing bot detection classification algorithm known as BoostOR was employed. BoostOR is an ensemble learning algorithm originally modeled to increase bot detection recall in a dataset and it has the possibility to solve the social media bot dilemma where there may be several different types of bots in the data. BoostOR was first introduced as an adjustment to existing ensemble classifiers to increase recall. However, after testing the BoostOR algorithm on unobserved datasets, results showed that BoostOR does not perform as expected. This study attempts to improve the BoostOR algorithm by comparing it with a baseline classification algorithm, AdaBoost, and then discussing the intentional differences between the two. Additionally, this study presents the main factors which contribute to the shortcomings of the BoostOR algorithm and proposes a solution to improve it. These recommendations should ensure that the BoostOR algorithm can be applied to new and unobserved datasets in the future.
ContributorsDavis, Matthew William (Author) / Liu, Huan (Thesis director) / Nazer, Tahora H. (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
Description
Social media users are inundated with information. Especially on Instagram--a social media service based on sharing photos--where for many users, missing important posts is a common issue. By creating a recommendation system which learns each user's preference and gives them a curated list of posts, the information overload issue can

Social media users are inundated with information. Especially on Instagram--a social media service based on sharing photos--where for many users, missing important posts is a common issue. By creating a recommendation system which learns each user's preference and gives them a curated list of posts, the information overload issue can be mediated in order to enhance the user experience for Instagram users. This paper explores methods for creating such a recommendation system. The proposed method employs a learning model called ``Factorization Machines" which combines the advantages of linear models and latent factor models. In this work I derived features from Instagram post data, including the image, social data about the post, and information about the user who created the post. I also collect user-post interaction data describing which users ``liked" which posts, and this was used in models leveraging latent factors. The proposed model successfully improves the rate of interesting content seen by the user by anywhere from 2 to 12 times.
ContributorsFakhri, Kian (Author) / Liu, Huan (Thesis director) / Morstatter, Fred (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12