Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 4 of 4
Filtering by

Clear all filters

Description
Energy poverty is a pressing issue in agricultural areas that affects the livelihoods of millions of people worldwide. The lack of access to modern energy services in rural communities hinders the development of the agricultural sector and limits economic opportunities. To address this issue, this thesis aims to develop a

Energy poverty is a pressing issue in agricultural areas that affects the livelihoods of millions of people worldwide. The lack of access to modern energy services in rural communities hinders the development of the agricultural sector and limits economic opportunities. To address this issue, this thesis aims to develop a predictive modeling framework using machine learning techniques to identify feasible interventions that can improve energy access in specific rural agricultural regions. Machine learning plays a pivotal role in addressing energy poverty in rural agricultural regions. By leveraging the power of advanced data analytics and predictive modeling, machine learning algorithms can analyze vast datasets related to energy usage, agricultural practices, geographic factors, and socioeconomic conditions. These algorithms can uncover valuable insights and patterns that are not readily apparent through traditional analytical methods. Moreover, machine learning enables the development of predictive models that can forecast energy demand and identify optimal strategies for improving energy access in rural areas. These models can take into account various variables, such as crop cycles, weather conditions, and community needs, to recommend interventions that are tailored to the specific requirements of each region.
ContributorsKonatam, Saisumana (Author) / Osburn, Steven (Thesis director) / Kerner, Hanah (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-12
Description
Phishing is one of most common and effective attack vectors in modern cybercrime. Rather than targeting a technical vulnerability in a computer system, phishing attacks target human behavioral or emotional tendencies through manipulative emails, text messages, or phone calls. Through PyAntiPhish, I attempt to create my own version of an

Phishing is one of most common and effective attack vectors in modern cybercrime. Rather than targeting a technical vulnerability in a computer system, phishing attacks target human behavioral or emotional tendencies through manipulative emails, text messages, or phone calls. Through PyAntiPhish, I attempt to create my own version of an anti-phishing solution, through a series of experiments testing different machine learning classifiers and URL features. With an end-goal implementation as a Chromium browser extension utilizing Python-based machine learning classifiers (those available via the scikit-learn library), my project uses a combination of Python, TypeScript, Node.js, as well as AWS Lambda and API Gateway to act as a solution capable of blocking phishing attacks from the web browser.
ContributorsYang, Branden (Author) / Osburn, Steven (Thesis director) / Malpe, Adwith (Committee member) / Ahn, Gail-Joon (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2024-05
Description
Machine learning algorithms have a wide variety of applications and use cases. They are robust in the sense that they can continue to learn and improve long after they have been deployed without much programmer supervision. One key area that machine learning has been used for is in

Machine learning algorithms have a wide variety of applications and use cases. They are robust in the sense that they can continue to learn and improve long after they have been deployed without much programmer supervision. One key area that machine learning has been used for is in the detection and classification of objects in images and videos. This so-called computer vision has typically been used by companies to extract user information from the images and videos that they post. Meta (formerly known as Facebook) had been using such algorithms to automatically tag users in pictures that were uploaded to the Facebook website up until November 2021 [1]. Although these algorithms have been used to exploit user’s privacy, they can also be used to help ensure this privacy. For this creative project, I developed a machine learning model that could detect faces in a given picture and identify the area of the picture that these faces took up. Training a model from scratch can take millions of images of data and hundreds of hours on powerful GPUs. Since I didn’t have access to those resources, I began with a pre-trained model known as VGG16 by Karen Simonyan & Andrew Zisserman. From there, I took 90 pictures of myself and annotated where in the image my face was located. Since 90 pictures wouldn’t be enough data for this algorithm, I used an image augmentation algorithm to randomly crop, flip, change brightness, change gamma, and recolor the images to expand the dataset. In total, I used 5400 images to train the algorithm. The machine learning model had a loss value that hovered around 0.1 thanks to the VGG16 model. It was able to accurately detect my face and also adapt whenever I moved my face horizontally and vertically across a camera. However, the model struggled to draw a bounding box whenever I moved my face forward or backward in the camera shot.
ContributorsGutierrez, Ariel (Author) / Osburn, Steven (Thesis director) / Panchoo, Anthony (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor)
Created2024-05
Description
In this thesis, I propose a framework for automatically generating custom orthotic insoles for Intelligent Mobility and ANDBOUNDS. Towards the end, the entire framework works together to ensure users receive the highest quality insoles through human quality checks. Three machine learning models were assembled: the Quality Model, the Meta-point Model,

In this thesis, I propose a framework for automatically generating custom orthotic insoles for Intelligent Mobility and ANDBOUNDS. Towards the end, the entire framework works together to ensure users receive the highest quality insoles through human quality checks. Three machine learning models were assembled: the Quality Model, the Meta-point Model, and the Multimodal Model. The Quality Model ensures that user uploaded foot scans are high quality. The Meta-point Model ensures that the meta-point coordinates assigned to the foot scans are below the required tolerance to align an insole mesh onto a foot scan. The Multimodal Model uses customer foot pain descriptors and the foot scan to customize an insole to the customers’ ailments. The results demonstrate that this is a viable option for insole creation and has the potential to aid or replace human insole designers.
ContributorsNucuta, Raymond (Author) / Osburn, Steven (Thesis director) / Joseph, Jeshua (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2024-05