Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 6 of 6
Filtering by

Clear all filters

132015-Thumbnail Image.png
Description
The mean age of the world’s population is rapidly increasing and with that growth in an aging population a large number of elderly people are in need of walking assistance. In addition, a number of medical conditions contribute to gait disorders that require gait rehabilitation. Wearable robotics can be used

The mean age of the world’s population is rapidly increasing and with that growth in an aging population a large number of elderly people are in need of walking assistance. In addition, a number of medical conditions contribute to gait disorders that require gait rehabilitation. Wearable robotics can be used to improve functional outcomes in the gait rehabilitation process. The ankle push-off phase of an individual’s gait is vital to their ability to walk and propel themselves forward. During the ankle push-off phase of walking, plantar flexors are required to providing a large amount of force to power the heel off the ground.

The purpose of this project is to improve upon the passive ankle foot orthosis originally designed in the ASU’s Robotics and Intelligent Systems Laboratory (RISE Lab). This device utilizes springs positioned parallel to the user’s Achilles tendon which store energy to be released during the push off phase of the user’s gait cycle. Goals of the project are to improve the speed and reliability of the ratchet and pawl mechanism, design the device to fit a wider range of shoe sizes, and reduce the overall mass and size of the device. The resulting system is semi-passive and only utilizes a single solenoid to unlock the ratcheting mechanism when the spring’s potential force is required. The device created also utilizes constant force springs rather than traditional linear springs which allows for a more predictable level of force. A healthy user tested the device on a treadmill and surface electromyography (sEMG) sensors were placed on the user’s plantar flexor muscles to monitor potential reductions in muscular activity resulting from the assistance provided by the AFO device. The data demonstrates the robotic shoe was able to assist during the heel-off stage and reduced activation in the plantar flexor muscles was evident from the EMG data collected. As this is an ongoing research project, this thesis will also recommend possible design upgrades and changes to be made to the device in the future. These upgrades include utilizing a carbon fiber or lightweight plastic frame such as many of the traditional ankle foot-orthosis sold today and introducing a system to regulate the amount of spring force applied as a function of the force required at specific times of the heel off gait phase.
ContributorsSchaller, Marcus Frank (Author) / Zhang, Wenlong (Thesis director) / Sugar, Thomas (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
132079-Thumbnail Image.png
Description
In this update to the ESPBot, we have introduced new libraries for a small OLED display and a beeper. This functionality can be easily expanded to multiple beepers and displays, but requires more GPIO pins, or for the user to not use some of the infrared sensors or the ultrasonic

In this update to the ESPBot, we have introduced new libraries for a small OLED display and a beeper. This functionality can be easily expanded to multiple beepers and displays, but requires more GPIO pins, or for the user to not use some of the infrared sensors or the ultrasonic sensor. We have also relocated some of the pins. The display can be updated to display 1 of 4 predefined shapes, or to display user-defined text. New shapes can be added by defining new methods within display.ino and calling the appropriate functions while parsing the JSON data in viple.ino. The beeper can be controlled by user-defined input to play any frequency for any amount of time. There is also a function added to play the happy birthday song. More songs can be added by defining new methods within beeper.ino and calling the appropriate functions while parsing the JSON data in viple.ino. More functionality can be added to allow the user to input a list of frequencies along with a list of time so the user can define their own songs or sequences on the fly.
ContributorsWelfert, Monica Michelle (Co-author) / Nguyen, Van (Co-author) / Chen, Yinong (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
Description
A heterogeneous team of robots working in symbiosis can maximize their strengths while complementing each other’s weaknesses. These simple robots can achieve more working together than they could on their own but cost less than a single robot with the same combination of capabilities. This project aims to validate the

A heterogeneous team of robots working in symbiosis can maximize their strengths while complementing each other’s weaknesses. These simple robots can achieve more working together than they could on their own but cost less than a single robot with the same combination of capabilities. This project aims to validate the symbiotic relationship of an Unmanned Aerial Vehicle (UAV) and an Unmanned Ground Vehicle (UGV) with a physical implementation of a heterogenous team of robots and a demonstration of their capabilities. This paper details the selection of robots, the design of the physical coupling mechanism, and the design of the autonomous controls. An experiment was performed to assess the capabilities of the robots according to four performance criteria. The UGV must navigate a space while the UAV follows. The UAV must couple with the UGV. The UAV must lift the UGV over an obstacle. The UGV must navigate the space while carrying the UAV.
ContributorsBreaux, Chris (Author) / Artemiadis, Panagiotis (Thesis director) / Lee, Hyunglae (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
131607-Thumbnail Image.png
Description
The objective of this project was to research and experimentally test methods of localization, waypoint following, and actuation for high-speed driving by an autonomous vehicle. This thesis describes the implementation of LiDAR localization techniques, Model Predictive Control waypoint following, and communication for actuation on a 2016 Chevrolet Camaro, Arizona State

The objective of this project was to research and experimentally test methods of localization, waypoint following, and actuation for high-speed driving by an autonomous vehicle. This thesis describes the implementation of LiDAR localization techniques, Model Predictive Control waypoint following, and communication for actuation on a 2016 Chevrolet Camaro, Arizona State University’s former EcoCAR. The LiDAR localization techniques include the NDT Mapping and Matching algorithms from the open-source autonomous vehicle platform, Autoware. The mapping algorithm was supplemented by that of Google Cartographer due to the limitations of map size in Autoware’s algorithms. The Model Predictive Control for waypoint following and the computer-microcontroller-actuator communication line are described. In addition to this experimental work, the thesis discusses an investigation of alternative approaches for each problem.
ContributorsCopenhaver, Bryce Stone (Author) / Berman, Spring (Thesis director) / Yong, Sze Zheng (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131720-Thumbnail Image.png
Description
In the past several years, the long-standing debate over freedom and responsibility has been applied to artificial intelligence (AI). Some such as Raul Hakli and Pekka Makela argue that no matter how complex robotics becomes, it is impossible for any robot to become a morally responsible agent. Hakli and Makela

In the past several years, the long-standing debate over freedom and responsibility has been applied to artificial intelligence (AI). Some such as Raul Hakli and Pekka Makela argue that no matter how complex robotics becomes, it is impossible for any robot to become a morally responsible agent. Hakli and Makela assert that even if robots become complex enough that they possess all the capacities required for moral responsibility, their history of being programmed undermines the robot’s autonomy in a responsibility-undermining way. In this paper, I argue that a robot’s history of being programmed does not undermine that robot’s autonomy in a responsibility-undermining way. I begin the paper with an introduction to Raul and Hakli’s argument, as well as an introduction to several case studies that will be utilized to explain my argument throughout the paper. I then display why Hakli and Makela’s argument is a compelling case against robots being able to be morally responsible agents. Next, I extract Hakli and Makela’s argument and explain it thoroughly. I then present my counterargument and explain why it is a counterexample to that of Hakli and Makela’s.
ContributorsAnderson, Troy David (Author) / Khoury, Andrew (Thesis director) / Watson, Jeffrey (Committee member) / Historical, Philosophical & Religious Studies (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
For my creative project, I built a musical robot and explored the possibilities for robots in music education. In addition, I wrote a guide to share what I learned and to provide helpful information to anyone who is planning on building their own musical robot. This is not a step-by-ste

For my creative project, I built a musical robot and explored the possibilities for robots in music education. In addition, I wrote a guide to share what I learned and to provide helpful information to anyone who is planning on building their own musical robot. This is not a step-by-step set of instructions; however, it gives the reader a preview of many options they have for building a musical robot. This guide includes information about existing musical robots, outlines possible strategies for brainstorming ideas, and describes various capabilities of musical robots. While this project focused on the intersection of music and robotics, my approach also included design thinking, which helped provide a focus and shaped my creative process.

The robot building guide is targeted toward an audience with little or no knowledge of robotics. It begins by exploring existing musical robots and explaining how existing products can be used as a source for inspiration. Next, this guide outlines various methods of design thinking and encourages the reader to use design thinking throughout the brainstorming and building process. This guide also highlights options for designing 3D-printed parts, which can be added to a robot. After that, the guide explains options for robot movement, specifically chassis kit assembly and using a 1Sheeld board with Arduino. This guide also explores the possibilities for the interaction of lights and sound, including sound-reactive lights and remote-control lights. Practical information about materials and their organization is provided, as well. The guide concludes with exciting possibilities for robots in music education.
ContributorsDemassa, Katelyn Debra (Author) / Tobias, Dr. Evan (Thesis director) / Bacalzo, Dean (Committee member) / School of Music (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05