Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 5 of 5
Filtering by

Clear all filters

Description
In the face of the world's most pressing sustainability challenges, such as climate change, ecosystem degradation, and loss of biodiversity, the following questions must be explored: Why are these situation occurring? How can we understand their complexity? How can we research these challenges to mitigate negative outcomes? This thesis investigates

In the face of the world's most pressing sustainability challenges, such as climate change, ecosystem degradation, and loss of biodiversity, the following questions must be explored: Why are these situation occurring? How can we understand their complexity? How can we research these challenges to mitigate negative outcomes? This thesis investigates the relationships between people and nature through coupled human and natural systems, or CHANS, and argues for a transdisciplinary research approach for sustainability science. The following questions and topics are discussed: 1. The Complexity of Sustainability and Implications for Traditional Research Approaches 2. Coupled Human and Natural Systems Research 3. What is Transdisciplinary Research, and How Does it Relate to the Living With Locusts Team's Coupled Human and Natural Systems Research? This thesis uses the case of a team researching international locust plagues to argue for this approach. The team's project is titled "Living With Locusts" and is directed by Arianne Cease of Arizona State University's School of Sustainability.
ContributorsLantz, Kayna Mishelle (Author) / Cease, Arianne (Thesis director) / Campbell, Jacob (Committee member) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134361-Thumbnail Image.png
Description

Based on findings of previous studies, there was speculation that two well-known experimental design software packages, JMP and Design Expert, produced varying power outputs given the same design and user inputs. For context and scope, another popular experimental design software package, Minitab® Statistical Software version 17, was added to the

Based on findings of previous studies, there was speculation that two well-known experimental design software packages, JMP and Design Expert, produced varying power outputs given the same design and user inputs. For context and scope, another popular experimental design software package, Minitab® Statistical Software version 17, was added to the comparison. The study compared multiple test cases run on the three software packages with a focus on 2k and 3K factorial design and adjusting the standard deviation effect size, number of categorical factors, levels, number of factors, and replicates. All six cases were run on all three programs and were attempted to be run at one, two, and three replicates each. There was an issue at the one replicate stage, however—Minitab does not allow for only one replicate full factorial designs and Design Expert will not provide power outputs for only one replicate unless there are three or more factors. From the analysis of these results, it was concluded that the differences between JMP 13 and Design Expert 10 were well within the margin of error and likely caused by rounding. The differences between JMP 13, Design Expert 10, and Minitab 17 on the other hand indicated a fundamental difference in the way Minitab addressed power calculation compared to the latest versions of JMP and Design Expert. This was found to be likely a cause of Minitab’s dummy variable coding as its default instead of the orthogonal coding default of the other two. Although dummy variable and orthogonal coding for factorial designs do not show a difference in results, the methods affect the overall power calculations. All three programs can be adjusted to use either method of coding, but the exact instructions for how are difficult to find and thus a follow-up guide on changing the coding for factorial variables would improve this issue.

ContributorsArmstrong, Julia Robin (Author) / McCarville, Daniel R. (Thesis director) / Montgomery, Douglas (Committee member) / Industrial, Systems (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134853-Thumbnail Image.png
Description
Autism Spectrum Disorder (ASD) is a lifelong neurodevelopmental disorder that is becoming increasingly common. Autism does not yet have a known etiology, nor a definitive diagnostic test, thus making diagnosis a difficult and rarely uniform task. Currently, ASD is behaviorally diagnosed based on criteria defined by the American Psychiatric Association

Autism Spectrum Disorder (ASD) is a lifelong neurodevelopmental disorder that is becoming increasingly common. Autism does not yet have a known etiology, nor a definitive diagnostic test, thus making diagnosis a difficult and rarely uniform task. Currently, ASD is behaviorally diagnosed based on criteria defined by the American Psychiatric Association in the Diagnostic and Statistical Manual of Mental Disorders (DSM). Recently, a change was made in the criteria from more lenient criteria in DSM-IV-TR, to more narrow criteria laid out by the DSM-V, which supersedes the DSM-IV-TR. This drastic change raised many questions and debates about which set of criteria are better. The more lenient criteria offers a more inclusive diagnosis giving greater access to therapies; while the narrow diagnostic criteria excludes some individuals, creating a more uniform diagnosis that's easier to use in research. This thesis analyzes the change in diagnostic criteria from the DSM-IV-TR to the DSM-V and the effects of these changes on the practices of diagnosis. In addition, it explores the implications of this change for the families of children with autism and for those involved in autism research, examining their respective opinions and interests pertaining to narrow verses broad diagnostic criteria. Building on this analysis, the thesis offers recommendations about diagnostic criteria should be set. It argues that the wellbeing of patients takes priority over the interests of researchers, and thus diagnosis should be done in a way that offers the best prognosis for all children who suffer from autistic symptoms.
ContributorsBremer, Michelle Nichole (Author) / Hurlbut, Ben (Thesis director) / Robert, Jason (Committee member) / Brian, Jennifer (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135031-Thumbnail Image.png
Description
The Walter Cronkite School of Journalism and Mass Communications stands as a "gold standard" of journalism education throughout the country. In my time at the school though, I found that some aspects in the whole of the curriculum were missing. I as well as several other friends became interested in

The Walter Cronkite School of Journalism and Mass Communications stands as a "gold standard" of journalism education throughout the country. In my time at the school though, I found that some aspects in the whole of the curriculum were missing. I as well as several other friends became interested in production and the technical side of things. This seemed to be the direction we wanted to go and soon realized this played a crucial part in journalism. Although there is a studio production class and a studio production track through the immersive Cronkite News program, there is not much in between. This inspired me to take a look deeper into production skills and their place within a journalism education. The project is split into three main sections that dive into the ideas of teaching production skills and technical skills to journalism students and whether or not it is valuable. The first part is the background of the project and why this project came to be. The background section explores the inspiration for the project. The project continues with a look at job statistics and where the industry currently sits. This continues into the final section that contains personal stories and interviews with professionals in the field. This is a critical section to back up claims made through research and evaluation. There is a lot of personal experience and non-traditional research done through this project, but the assertions and conclusions made are clear. Through job statistics, personal stories, and interviews with professionals, this project examines how production could be taught in a traditional journalism program. These stories show that a journalism curriculum may not be the best place to teach production in depth, but that it still is an incredibly important part of the journalism world as a whole.
Created2016-12
134904-Thumbnail Image.png
Description
The concept of “good” research is concrete in terms of technique, but complex in theory. As technology advances, the complexity of problems we must solve also grows. Research is facing an ethical dilemma—which projects, applied or basic, should be funded. Research is no longer an isolated sector in society, and

The concept of “good” research is concrete in terms of technique, but complex in theory. As technology advances, the complexity of problems we must solve also grows. Research is facing an ethical dilemma—which projects, applied or basic, should be funded. Research is no longer an isolated sector in society, and the decisions made inside of the laboratory are affecting the general public more directly than ever before. While there is no correct answer to what the future of research should be, it is clear that good research can no longer be only defined by the current classification system, which is rooted in antiquated, yet ingrained, social status distinctions.
Differences between basic and applied research were explored through a wet-lab case study. Vaccinia virus (VACV) infections are a prime model of the competition between a virus and its host. VACV contains a gene that is highly evasive of the host immune system, gene E3L. The protein encoded by E3L is E3, which contains two highly conserved regions, a C-terminus, and a N-terminus. While the C-terminus is well-understood, the mechanism by which the N-terminus grants IFN resistance was previously unknown. This project demonstrated that the N-terminus prevents the initiation of programmed necrosis through host-encoded cellular proteins RIP3 and DAI. These findings provide insight into the function of the N-terminus of E3, as well as the unique functions of induced programmed necrosis.
This project was an example of “basic” research. However, it highlights the interconnectivity of basic and applied research and the danger in isolating both projects and perspectives. It points to the difficult decisions that must be made in science, and the need for a better research classification system that considers what makes science “good” outside of antiquated social class ideologies that have shaped science since ancient Greece. While there are no easy answers to determine what makes research “good,” thinking critically about the types of research projects that will be pursued, and the effects that research has on both science and society, will raise awareness, initiate new conversations, and encourage more dialogue about science in the 21st century.
ContributorsSnyder, Caroline Jane (Author) / Jacobs, Bertram (Thesis director) / Hurlbut, Ben (Committee member) / Mateusz, Szczerba (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12