Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 17
Filtering by

Clear all filters

ContributorsLei, Harry (Author) / Smith, Brian (Thesis director) / Albin-Brooks, Christopher (Committee member) / Barrett, The Honors College (Contributor)
Created2023-05
186296-Thumbnail Image.png
ContributorsLei, Harry (Author) / Smith, Brian (Thesis director) / Albin-Brooks, Christopher (Committee member) / Barrett, The Honors College (Contributor)
Created2023-05
Description

This project aimed to identify barriers to participation and develop strategies to increase the accessibility of a diabetes prevention program in the Latino community. Surveys were administered to past participants of a randomized control trial at a community event where study results were shared. The top concerns expressed by respondents

This project aimed to identify barriers to participation and develop strategies to increase the accessibility of a diabetes prevention program in the Latino community. Surveys were administered to past participants of a randomized control trial at a community event where study results were shared. The top concerns expressed by respondents were related to the use of personal information. Primary barriers to participation included work/school commitments and transportation issues. Strategies to increase accessibility included providing flexible class times, having bilingual research staff, and using multiple forms of community outreach such as flyers, health events, phone calls, texts, and social media. Expanding community partners was also identified as a primary strategy for increasing program reach. Researchers should focus on addressing confidentiality concerns, providing financial compensation for attendance, flexible scheduling, and utilizing diverse outreach methods to enhance access to diabetes prevention programs in the Latino community

ContributorsHouck, Kassidy (Author) / Shaibi, Gabriel (Thesis director) / Williams, Allison (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2023-05
Description

This paper describes a project involving the optimization of the analysis process of FreeSurfer and ANTS Registration for neuroscience analytics of patients at risk of cognitive decline using Nipype. The paper details the process of discovering more about Nipype, learning to use a supercomputer, and implementing the open-source python code

This paper describes a project involving the optimization of the analysis process of FreeSurfer and ANTS Registration for neuroscience analytics of patients at risk of cognitive decline using Nipype. The paper details the process of discovering more about Nipype, learning to use a supercomputer, and implementing the open-source python code to fit the needs of the research lab. Nipype is a python-based initiative to unify the various software packages used within the neuroscience community for data analysis. This paper also serves as documentation of the steps taken to complete the project so that future students are able to continue the optimization process to result in one cohesive workflow in which data is able to flow through a unified pipeline of analysis in the future.

ContributorsCave, Elizabet (Author) / Ofori, Edward (Thesis director) / Sopha, Matthew (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor)
Created2023-05
Description

Advancing the understanding and treatment of many neurological disorders can be achieved by improving methods of neuronal detection at increased depth in the mammalian brain. Different cell subtypes cannot be detected using non-invasive techniques beyond 1 mm from cortical surface, in the context of targeting particular cell types in vivo

Advancing the understanding and treatment of many neurological disorders can be achieved by improving methods of neuronal detection at increased depth in the mammalian brain. Different cell subtypes cannot be detected using non-invasive techniques beyond 1 mm from cortical surface, in the context of targeting particular cell types in vivo (Wang, 2012). These limitations in the depth of imaging and targeting are due to optical scattering (Ntziachristos, 2010). In order to overcome these restrictions, longer wavelength fluorescent proteins have been utilized by researchers to see tagged cells at depth. Optical techniques such as two-photon and confocal microscopy have been used in combination with fluorescent proteins to expand depth, but are still limited by the penetration depth of light due to optical scattering (Lee, 2015). This research aims to build on other detection methods, such as the photoacoustic effect and automated fluorescence-guided electrophysiology, to overcome this limitation.

ContributorsAridi, Christina (Author) / Smith, Barbara (Thesis director) / Marschall, Ethan (Committee member) / Barrett, The Honors College (Contributor) / Watts College of Public Service & Community Solut (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
Description

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the deterioration of upper and lower motor neurons in the brain, brain stem, and spinal cord. Multiple missense mutations have been connected to familial ALS, including those in the Matrin-3 protein. Matrin-3 is an RNA and DNA-binding protein encoded

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the deterioration of upper and lower motor neurons in the brain, brain stem, and spinal cord. Multiple missense mutations have been connected to familial ALS, including those in the Matrin-3 protein. Matrin-3 is an RNA and DNA-binding protein encoded by the MATR3 gene. Normally found in the nuclear matrix, Matrin-3 plays several roles vital to RNA metabolism, including splicing, RNA degradation, mRNA transport, mRNA stability, and transcription. Mutations in MATR3 leading to familial ALS include P154S and S85C, but the mechanisms through which these mutations contribute to ALS pathology remain unknown. This makes mouse models particularly useful in elucidating pathology mechanisms, ultimately having the potential to serve as preclinical models for therapeutic drugs. Because of the importance of animal models, we worked to create ALS mouse models for the MATR3 P154S and S85C mutations. We specifically generated two CRISPR/Cas9 mediated knock-in mouse models containing the MATR3 P154S or S85C mutation expressed under the control of the endogenous promoter. Both the homozygous and heterozygous P154S mice developed no physical or motor defects or shortening of lifespan compared to the wildtype mice. They also exhibited no ALS-like pathology in either the muscle or spinal cord up to 24 months. In contrast, the homozygous S85C mice exhibited significant physical and motor differences, including smaller weight, impaired gait, and shortening of lifespan. Some ALS-like pathology was observed in the muscle, but pathology remained limited in the spinal cord of the homozygous mice up to 12 months. In conclusion, our data suggests that the MATR3 P154S mutation alone does not cause ALS in vivo, while the MATR3 S85C mutation induces significant motor deficits, with pathology in the spinal cord potentially beginning at older ages not examined in our study.

ContributorsHouchins, Nicole (Author) / Buetow, Kenneth (Thesis director) / Medina, David (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of Psychology (Contributor)
Created2023-05
Description

Due to what is known as the “biologically desert fallacy” and the pervasive westernized ideal of wilderness that has influenced widespread American Conservation culture for millennia, urban areas have long been deemed as areas devoid of biodiversity. However, cities can contribute significantly to regional biodiversity and provide vital niches for

Due to what is known as the “biologically desert fallacy” and the pervasive westernized ideal of wilderness that has influenced widespread American Conservation culture for millennia, urban areas have long been deemed as areas devoid of biodiversity. However, cities can contribute significantly to regional biodiversity and provide vital niches for wildlife, illuminating the growing awareness that cities are crucial to the future of conservation and combating the global biodiversity crisis. In terms of the biodiversity crisis, bats are a relevant species of concern. In many studies, different bat species have been broadly classified according to their ability to adapt to urban environments. There is evidence that urban areas can filter bat species based on traits and behavior, with many bats possessing traits that do not allow them to live in cities. The three broad categories are urban avoiders, urban adapters, or urban exploiters based upon where their abundance is highest along a gradient of urban intensity. A common example of an urban exploiter bat is a Mexican Free-tailed bat, which can thrive and rely on urban environments and it is found in the Phoenix Metropolitan area. Bats are important as even in urban environments they play vital ecological roles such as cactus pollination, insect management, and seed dispersal. Bat Crazy is a thesis project focused on urban enhancement and the field of urban biodiversity. The goals of this thesis are to observe how bio-conscious urban cities that work to promote species conservation can serve as a positive tool to promote biodiversity and foster community education and engagement for their urban environment.

ContributorsKaiser, Nicole (Author) / Senko, Jesse (Thesis director) / Angilletta, Michael (Committee member) / Lynch, John (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor)
Created2023-05
Description

For my thesis, I conducted a study on a healthy pediatric cohort to investigate how DNA methylation of genes related to myelin may predict total white matter volume in a healthy pediatric cohort. The relatively new field of neuroimaging epigenetics investigates how methylation of genes in peripheral tissue samples is

For my thesis, I conducted a study on a healthy pediatric cohort to investigate how DNA methylation of genes related to myelin may predict total white matter volume in a healthy pediatric cohort. The relatively new field of neuroimaging epigenetics investigates how methylation of genes in peripheral tissue samples is related to certain structural or functional features of the brain, as measured by neuroimaging data. Research has already demonstrated that methylation of genes in peripheral tissues is related to a variety of brain disorders. We hypothesized that methylation of myelin-related genes as measured in saliva samples would predict total white matter volume in a healthy pediatric cohort. After processing DNA methylation data from saliva samples from participants, multiple linear regressions were ran to determine if DNA methylation of myelin related genes was related to total white matter volume, as measured by data from structural MRIs. Results showed that these genes, which included MOG, MBP, and MYRF, significantly predicted total white matter volume. Two genes that were significant in our results have been previously shown to produce proteins that are essential to the structure of myelin.

ContributorsSpencer, Sophie (Author) / Lewis, Candace (Thesis director) / Braden, Blair (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / College of Integrative Sciences and Arts (Contributor)
Created2023-05
Description

Marketing In The Digital Age, or MITDA is a start-up business that provides seminars and lectures on digital media marketing and social media algorithms to ASU students and small businesses. We work with social media influencers to host lectures and seminars on brand awareness at ASU, and then offer classes

Marketing In The Digital Age, or MITDA is a start-up business that provides seminars and lectures on digital media marketing and social media algorithms to ASU students and small businesses. We work with social media influencers to host lectures and seminars on brand awareness at ASU, and then offer classes and consulting to small-businesses who are looking to expand their online brand awareness. The content that we focus on compromises many different aspects of digital media marketing: platform specific algorithms, trends, digital media content creation (such as Photoshop and Canva), influencer brand deals and sponsorships, and influencer consultations. With MITDA, ASU students and small businesses have the opportunity to hop on quick trends, build a marketable brand to Generation Z, and learn how to stay relevant in the new marketing world of influencers and content creators.

ContributorsOchsmann, Reagan (Author) / Byrne, Jared (Thesis director) / Larsen, Wiley (Committee member) / Barrett, The Honors College (Contributor) / Department of Management and Entrepreneurship (Contributor) / Department of Supply Chain Management (Contributor)
Created2023-05
Description

This study utilized a Convergent Mixed Methods design to identify different expressions of resilience in response to a health/familial problem. The research aimed to determine which specific expressions of resilience were significantly associated with higher levels of resilience. The findings revealed two significant effects related to social support and persistence

This study utilized a Convergent Mixed Methods design to identify different expressions of resilience in response to a health/familial problem. The research aimed to determine which specific expressions of resilience were significantly associated with higher levels of resilience. The findings revealed two significant effects related to social support and persistence as expressions of resilience. The High Resilience group exhibited a higher proportion of individuals mentioning persistence and social support in their coping strategies. The study concluded that social support seeking is a major coping strategy among individuals with high resilience and suggested that healthcare providers, particularly nurses, should recommend and provide resources for clients to seek social support. Furthermore, the role of persistence highlights the importance of encouraging clients to set achievable goals, develop a plan, and monitor their progress to remain motivated in resolving their difficult health-related problem.

ContributorsJohn, Avery (Author) / Castro, Felipe (Thesis director) / Lober, Angela (Committee member) / Juarigue, Lisa (Committee member) / Barrett, The Honors College (Contributor) / Edson College of Nursing and Health Innovation (Contributor)
Created2023-05