Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

137037-Thumbnail Image.png
Description
There is an interest in citizen scientist networks such as CoCoRaHS to develop an air temperature sensor with a solar shield that is both extremely low cost and user friendly for use in widespread data collection in order to analyze urban microclimates. This paper outlines work done to develop a

There is an interest in citizen scientist networks such as CoCoRaHS to develop an air temperature sensor with a solar shield that is both extremely low cost and user friendly for use in widespread data collection in order to analyze urban microclimates. This paper outlines work done to develop a low cost micrometeorology instrument to fulfill the design requirements set by CoCoRaHS. While the first two revisions of this technology had significant changes in development, a third revision was created as a proof of concept that low cost temperature sensors could be used in an array to accurately measure air temperature without solar radiation interference. Another technology, described as revision four, called the iButton was also evaluated and displayed promising ability to log temperatures, but costs too much for the ultra-low cost design goal. Additionally, work was done to design a radiation shield that will be prototyped and tested alongside commercial radiation shields. This controlled experiment will also include further evaluation of the iButton and the next revision of a custom microclimate temperature sensing unit to determine the best option for widespread field testing.
ContributorsMarshall, Travis Keith (Author) / Jordan, Shawn (Thesis director) / Ruddell, Benjamin (Committee member) / Barrett, The Honors College (Contributor) / Department of Engineering (Contributor)
Created2014-05