Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 41 - 50 of 157
Filtering by

Clear all filters

132362-Thumbnail Image.png
Description
In the study of the human brain’s ability to multitask, there are two perspectives: concurrent multitasking (performing multiple tasks simultaneously) and sequential multitasking (switching between tasks). The goal of this study is to investigate the human brain’s ability to “multitask” with multiple demanding stimuli of approximately equal concentration, from an

In the study of the human brain’s ability to multitask, there are two perspectives: concurrent multitasking (performing multiple tasks simultaneously) and sequential multitasking (switching between tasks). The goal of this study is to investigate the human brain’s ability to “multitask” with multiple demanding stimuli of approximately equal concentration, from an electrophysiological perspective different than that of stimuli which don’t require full attention or exhibit impulsive multitasking responses. This study investigates the P3 component which has been experimentally proven to be associated with mental workload through information processing and cognitive function in visual and auditory tasks, where in the multitasking domain the greater attention elicited, the larger P3 waves are produced. This experiment compares the amplitude of the P3 component of individual stimulus presentation to that of multitasking trials, taking note of the brain workload. This study questions if the average wave amplitude in a multitasking ERP experiment will be the same as the grand average when performing the two tasks individually with respect to the P3 component. The hypothesis is that the P3 amplitude will be smaller in the multitasking trial than in the individual stimulus presentation, indicating that the brain is not actually concentrating on both tasks at once (sequential multitasking instead of concurrent) and that the brain is not focusing on each stimulus to the same degree when it was presented individually. Twenty undergraduate students at Barrett, the Honors College at Arizona State University (10 males and 10 females, with a mean age of 18.75 years, SD= 1.517) right handed, with normal or corrected visual acuity, English as first language, and no evidence of neurological compromise participated in the study. The experiment results revealed that one- hundred percent of participants undergo sequential multitasking in the presence of two demanding stimuli in the electrophysiological data, behavioral data, and subjective data. In this particular study, these findings indicate that the presence of additional demanding stimuli causes the workload of the brain to decrease as attention deviates in a bottleneck process to the multiple requisitions for focus, indicated by a reduced P3 voltage amplitude with the multitasking stimuli when compared to the independent. This study illustrates the feasible replication of P3 cognitive workload results for demanding stimuli, not only impulsive-response experiments, to suggest the brain’s tendency to undergo sequential multitasking when faced with multiple demanding stimuli. In brief, this study demonstrates that when higher cognitive processing is required to interpret and respond to the stimuli, the human brain results to sequential multitasking (task- switching, not concurrent multitasking) in the face of more challenging problems with each stimulus requiring a higher level of focus, workload, and attention.
ContributorsNeill, Ryan (Author) / Brewer, Gene (Thesis director) / Peter, Beate (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
Traditional forms of news distribution are rapidly dying out. Newspaper revenue continues to decline, while internet alternatives, accurate or otherwise, gain traction. One of the fastest growing forms of "new media" is the podcast. Everyone from comedians to organizations like National Public Radio is launching their own, and they are

Traditional forms of news distribution are rapidly dying out. Newspaper revenue continues to decline, while internet alternatives, accurate or otherwise, gain traction. One of the fastest growing forms of "new media" is the podcast. Everyone from comedians to organizations like National Public Radio is launching their own, and they are increasingly becoming legitimate sources of income when supplemented with advertising. Video podcasts have also exploded into the mainstream, generating millions of views on platforms like YouTube. However, it is rare to find a video podcast series with one journalist and a guest, and even less common for a show to be hosted by a college student. The "Tell it Like it is" video podcast is an attempt at bringing college journalists into the world of video podcasting. It examines the extent to which a single person can have a successful podcast while in college and what resources are necessary for the task. The following paper contains the history of podcasting, its growth in the 21st century, the inspiration for this project, an in-depth description and background of each episode, challenges, successes, future endeavors, and a conclusion. An accompanying website serves as the headquarters for the five-part video podcast series. The website also hosts additional information about the subjects and their careers. All episodes have been uploaded to YouTube.
ContributorsDowd, Kyle Christopher (Author) / Knudson, Syleste (Thesis director) / Sandoval, Mathew (Committee member) / School of Politics and Global Studies (Contributor) / Walter Cronkite School of Journalism & Mass Comm (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
131951-Thumbnail Image.png
Description
Previous research has showed that auditory modulation may be affected by pure tone
stimuli played prior to the onset of speech production. In this experiment, we are examining the
specificity of the auditory stimulus by implementing congruent and incongruent speech sounds in
addition to non-speech sound. Electroencephalography (EEG) data was recorded for eleven

Previous research has showed that auditory modulation may be affected by pure tone
stimuli played prior to the onset of speech production. In this experiment, we are examining the
specificity of the auditory stimulus by implementing congruent and incongruent speech sounds in
addition to non-speech sound. Electroencephalography (EEG) data was recorded for eleven adult
subjects in both speaking (speech planning) and silent reading (no speech planning) conditions.
Data analysis was accomplished manually as well as via generation of a MATLAB code to
combine data sets and calculate auditory modulation (suppression). Results of the P200
modulation showed that modulation was larger for incongruent stimuli than congruent stimuli.
However, this was not the case for the N100 modulation. The data for pure tone could not be
analyzed because the intensity of this stimulus was substantially lower than that of the speech
stimuli. Overall, the results indicated that the P200 component plays a significant role in
processing stimuli and determining the relevance of stimuli; this result is consistent with role of
P200 component in high-level analysis of speech and perceptual processing. This experiment is
ongoing, and we hope to obtain data from more subjects to support the current findings.
ContributorsTaylor, Megan Kathleen (Author) / Daliri, Ayoub (Thesis director) / Liss, Julie (Committee member) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131792-Thumbnail Image.png
Description
In 2019 the beauty industry was valued at $532 billion and is continuing to grow at lightning pace (Biron). Clearly, the beauty industry is profitable, so why have so few people bothered to study it? In the Barrett thesis database, as of 2020 there were less than half a

In 2019 the beauty industry was valued at $532 billion and is continuing to grow at lightning pace (Biron). Clearly, the beauty industry is profitable, so why have so few people bothered to study it? In the Barrett thesis database, as of 2020 there were less than half a dozen theses addressing the cosmetic industry, compared to nearly 50 projects concerning football. In response to the lack of study in academics and general public knowledge concerning the history and impact of cosmetics, the multi-part podcast series, Making Ourselves Up: The History and Impact of Cosmetics/Makeup was created by Kaley Scott, a fashion and sociology student. The personal nature of makeup and cosmetics, making the intimate forum of a podcast the perfect medium. The podcast operates in five episodes. First is: Making Ourselves Up, Makeup Fueling our Memories and Selfhood which contains personal narratives of makeup through interviews, establishing the intimate and wide-reaching effects of cosmetics and makeup. The second and third episodes: How We’ve Made Ourselves Up, from Cleopatra to Helena Rubenstein and How We’ve Made Ourselves Up, from Elizabeth Arden to Glossier cover the entirety of the history of makeup and cosmetics, focusing on western beauty. The third episode: Making Faces, Applying Makeup, the Theories that Let Us Create which focuses on techniques and theories of color and makeup application. Lastly is, Making Change, Cosmetics as a Current of Social Change which reveals how cosmetics have led to social change and continue to allow us to reinvent our society and ourselves. Makeup and cosmetics have been incredibly important for the creator for much of her life and she created this project with the aim of proving how important they are to the rest of the world.
ContributorsScott, Kaley Wynter (Author) / Sewell, Dennita (Thesis director) / Aiello, Diane (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131397-Thumbnail Image.png
Description
Serotonin 2A receptor (5-HT2AR) levels are decreased in the brains of schizophrenia patients. This phenomenon is modeled in mice that lack the transcription factor Egr3. The head-twitch response (HTR) is a behavioral assay used to assess the physiological function of 5-HT2ARs. However, current quantification methods are time

Serotonin 2A receptor (5-HT2AR) levels are decreased in the brains of schizophrenia patients. This phenomenon is modeled in mice that lack the transcription factor Egr3. The head-twitch response (HTR) is a behavioral assay used to assess the physiological function of 5-HT2ARs. However, current quantification methods are time consuming and prone to inter-rater variability. Here, we demonstrate the validity and reliability of an automated head-twitch system to quantify HTRs of Egr3-/- mice.
ContributorsOzols, Annika Biruta (Author) / Lisenbee, Cayle S. (Thesis director) / Gallitano, Amelia L. (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
Empathy Link is a creative project that looks at the universal problems that many college students experience. The show is an interview style podcast, in which the students come on and talk about their life experiences, specifically the dilemmas and emotional challenges they face. Furthermore, Empathy Link delves into student’s

Empathy Link is a creative project that looks at the universal problems that many college students experience. The show is an interview style podcast, in which the students come on and talk about their life experiences, specifically the dilemmas and emotional challenges they face. Furthermore, Empathy Link delves into student’s identities, and how many of the more “universal problems” that the students face, are also affected by the identity and background, such as ethnicity, gender, immigration status, class, etc. By analyzing the cross-section between the more relatable problems that almost every student experiences and the more unique identity problems, listeners are able to find common ground with students from different backgrounds from them as well as begin to understand struggles that they may not or will never experience. Empathy Link consists of a six-episode first season. Each episode is somewhere between 20 – 30 minutes long. The topics discussed in episodes were wide-ranging: disagreeing with the worldviews of one’s parents, wanting to pursue a passion but scared because of financial instability, the anxiety of over-working, the feeling of listlessness post-college life, and the passing of a loved one. Before each episode, I would perform a pre-interview for each guest to ensure they would be a good fit for the show, write questions for that guest, and schedule a time and place to record. Afterwards, I would edit each episode for clarity, sound quality, and flow to ensure the content was up to par. Empathy Link is a podcast dedicated to bridging the gap between the perceptions of college students, specifically those from marginalized groups, and the actual experiences and struggles that they face.
ContributorsMarsh, Zackiel S (Author) / Scott, Jason (Thesis director) / Sopha, Matthew (Committee member) / Department of Information Systems (Contributor) / School of Film, Dance and Theatre (Contributor) / Department of Management and Entrepreneurship (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131570-Thumbnail Image.png
Description
Transcranial Current Stimulation (TCS) is a long-established method of modulating neuronal activity in the brain. One type of this stimulation, transcranial alternating current stimulation (tACS), is able to entrain endogenous oscillations and result in behavioral change. In the present study, we used five stimulation conditions: tACS at three different frequencies

Transcranial Current Stimulation (TCS) is a long-established method of modulating neuronal activity in the brain. One type of this stimulation, transcranial alternating current stimulation (tACS), is able to entrain endogenous oscillations and result in behavioral change. In the present study, we used five stimulation conditions: tACS at three different frequencies (6Hz, 12Hz, and 22Hz), transcranial random noise stimulation (tRNS), and a no-stimulation sham condition. In all stimulation conditions, we recorded electroencephalographic data to investigate the link between different frequencies of tACS and their effects on brain oscillations. We recruited 12 healthy participants. Each participant completed 30 trials of the stimulation conditions. In a given trial, we recorded brain activity for 10 seconds, stimulated for 12 seconds, and recorded an additional 10 seconds of brain activity. The difference between the average oscillation power before and after a stimulation condition indicated change in oscillation amplitude due to the stimulation. Our results showed the stimulation conditions entrained brain activity of a sub-group of participants.
ContributorsChernicky, Jacob Garrett (Author) / Daliri, Ayoub (Thesis director) / Liss, Julie (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133108-Thumbnail Image.png
Description
Abstract White matter thickness correlates with various mental illness. Commissure white matter tracts are responsible for interconnecting the same cortical area in both hemispheres. Injury to the brain can result in thinning and shrinkage even collapsing and detachment of the white matter tracts' myelin sheaths. Injury can affect cognitive function

Abstract White matter thickness correlates with various mental illness. Commissure white matter tracts are responsible for interconnecting the same cortical area in both hemispheres. Injury to the brain can result in thinning and shrinkage even collapsing and detachment of the white matter tracts' myelin sheaths. Injury can affect cognitive function and time points are essential for therapeutic intervention. Research is beginning to identify gradual long-term neurodegenerative effects. With the advancement of brain imaging technology, we know that Wallerian degeneration has a significant negative impact on the white matter tracts throughout the brain (Johnson, Stewart, & Smith, 2013). If major tracts become injured like, the corpus callosum, then it can affect interhemispheric communication. Once myelin is damaged the axon becomes vulnerable, and the mechanisms of nerve recovery are not well known. Myelin sheath recovery has been studied in hopes to proliferate the oligodendrocytes that make up for the atrophied myelin. Neurotoxic chemicals released at activation of macrophages which hinders the brains ability to proliferate myelin protein needed for myelin differentiation adequately. In the central nervous system myelin has mechanisms to recover. Neurogenesis is a naturally occurring recovery mechanism seen after brain injury. Understanding the time points in which brain recovery occurs is important for treatment of diffuse injuries that cannot be identified through some imaging techniques. To better understand critical timepoints of natural recovery after brain injury can allow further investigation for early intervention to promote adequate recovery.
ContributorsLiptow, Kristen Ashley (Author) / Neisewander, Janet (Thesis director) / Law, L. Matthew (Committee member) / School of Social and Behavioral Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
133052-Thumbnail Image.png
Description
The aim of this study was to determine whether IUD administration, with and without the presence of Levo, and with and without the presence of the ovaries, impacts cognition in a rat model. Rats received either Sham or Ovariectomy (Ovx) surgery (removal of the ovaries), plus either no IUD, a

The aim of this study was to determine whether IUD administration, with and without the presence of Levo, and with and without the presence of the ovaries, impacts cognition in a rat model. Rats received either Sham or Ovariectomy (Ovx) surgery (removal of the ovaries), plus either no IUD, a Blank IUD (without Levo), or a Levo-releasing IUD (Levo IUD), enabling us to evaluate the effects of Ovx and the effects of IUD administration on cognition. Two weeks after surgery, all treatment groups were tested on the water radial arm maze, Morris water maze, and visible platform task to evaluate cognition. At sacrifice, upon investigation of the uteri, it was determined that some of the IUDs were no longer present in animals from these groups: Sham\u2014Blank IUD, Ovx\u2014Blank IUD, and Sham\u2014Levo IUD. Results from the remaining three groups showed that compared to Sham animals with no IUDs, Ovx animals with no IUDs had marginally impaired working memory performance, and that Ovx animals with Levo IUDs as compared to Ovx animals with no IUDs had marginally enhanced memory performance, not specific to a particular memory type. Results also showed that Ovx animals with Levo IUDs had qualitatively more cells in their vaginal smears and increased uterine horn weight compared to Ovx animals with no IUDs, suggesting local stimulation of the Levo IUDs to the uterine horns. Overall, these results provide alternative evidence to the hypothesis that the Levo IUD administers Levo in solely a localized manner, and suggests that the possibility for the Levo IUD to affect reproductive cyclicity in ovary-intact animals is not rejected. The potential for the Levo IUD to exert effects on cognition suggests that either the hormone does in fact systemically circulate, or that the Levo IUD administration affects cognition by altering an as yet undetermined hormonal or other feedback between the uterus and the brain.
ContributorsStrouse, Isabel Martha (Author) / Bimonte-Nelson, Heather (Thesis director) / Glenberg, Arthur (Committee member) / Sirianni, Rachael (Committee member) / Conrad, Cheryl (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
132964-Thumbnail Image.png
Description
In epilepsy, malformations that cause seizures often require surgery. The purpose of this research is to join forces with the Multi-Center Epilepsy Lesion Detection (MELD) project at University College London (UCL) in order to improve the process of detecting lesions in patients with drug-resistant epilepsy. This, in turn, will improve

In epilepsy, malformations that cause seizures often require surgery. The purpose of this research is to join forces with the Multi-Center Epilepsy Lesion Detection (MELD) project at University College London (UCL) in order to improve the process of detecting lesions in patients with drug-resistant epilepsy. This, in turn, will improve surgical outcomes via more structured surgical planning. It is a global effort, with more than 20 sites across 5 continents. The targeted populations for this study include patients whose epilepsy stems from Focal Cortical Dysplasia. Focal Cortical Dysplasia is an abnormality of cortical development, and causes most of the drug-resistant epilepsy. Currently, the creators of MELD have developed a set of protocols which wrap various
commands designed to streamline post-processing of MRI images. Using this partnership, the Applied Neuroscience and Technology Lab at PCH has been able to complete production of a post-processing pipeline which integrates locally sourced smoothing techniques to help identify lesions in patients with evidence of Focal Cortical Dysplasia. The end result is a system in which a patient with epilepsy may experience more successful post-surgical results due to the
combination of a lesion detection mechanism and the radiologist using their trained eye in the presurgical stages. As one of the main points of this work is the global aspect of it, Barrett thesis funding was dedicated for a trip to London in order to network with other MELD project collaborators. This was a successful trip for the project as a whole in addition to this particular thesis. The ability to troubleshoot problems with one another in a room full of subject matter
experts allowed for a high level of discussion and learning. Future work includes implementing machine learning approaches which consider all morphometry parameters simultaneously.
ContributorsHumphreys, Zachary William (Author) / Kodibagkar, Vikram (Thesis director) / Foldes, Stephen (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05