Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

133894-Thumbnail Image.png
Description
Pandora is a play exploring our relationship with gendered technology through the lens of artificial intelligence. Can women be subjective under patriarchy? Do robots who look like women have subjectivity? Hoping to create a better version of ourselves, The Engineer must navigate the loss of her creation, and Pandora must

Pandora is a play exploring our relationship with gendered technology through the lens of artificial intelligence. Can women be subjective under patriarchy? Do robots who look like women have subjectivity? Hoping to create a better version of ourselves, The Engineer must navigate the loss of her creation, and Pandora must navigate their new world. The original premiere run was March 27-28, 2018, original cast: Caitlin Andelora, Rikki Tremblay, and Michael Tristano Jr.
ContributorsToye, Abigail Elizabeth (Author) / Linde, Jennifer (Thesis director) / Abele, Kelsey (Committee member) / Department of Information Systems (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
148032-Thumbnail Image.png
Description

Artificial Intelligence’s facial recognition programs are inherently racially biased. The programs are not necessarily created with the intent to disproportionately impact marginalized communities, but through their data mining process of learning, they can become biased as the data they use may train them to think in a biased manner. Biased

Artificial Intelligence’s facial recognition programs are inherently racially biased. The programs are not necessarily created with the intent to disproportionately impact marginalized communities, but through their data mining process of learning, they can become biased as the data they use may train them to think in a biased manner. Biased data is difficult to spot as the programming field is homogeneous and this issue reflects underlying societal biases. Facial recognition programs do not identify minorities at the same rate as their Caucasian counterparts leading to false positives in identifications and an increase of run-ins with the law. AI does not have the ability to role-reverse judge as a human does and therefore its use should be limited until a more equitable program is developed and thoroughly tested.

ContributorsGurtler, Charles William (Author) / Iheduru, Okechukwu (Thesis director) / Fette, Donald (Committee member) / Economics Program in CLAS (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05