Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 4 of 4
Filtering by

Clear all filters

135688-Thumbnail Image.png
Description
Education is a very sensitive topic when it comes to implementing the right policies. From professionals well-versed in the topic, to the very students who are being taught, feedback for reform is constantly being addressed. Nonetheless, there remains a large gap between the performance of some of the most advanced

Education is a very sensitive topic when it comes to implementing the right policies. From professionals well-versed in the topic, to the very students who are being taught, feedback for reform is constantly being addressed. Nonetheless, there remains a large gap between the performance of some of the most advanced countries in the world and the United States of America. As it stands today, USA is arguably the most technologically advanced country and the outright leader of the free market. For over a century this nation has been exceeding expectations in nearly every industry known to man and aiding the rest of the world in their endeavors for a higher standard of living. Yet, there seems to be something critically wrong with the way a large majority of the younger generation are growing up. How can a country so respected in the world fall so far behind in what is considered the basics of human education: math and science? The Trends in International Mathematics and Science Study (TIMSS) is a series of assessments taken by countries all around the world to determine the strength of their youth's knowledge. Since its inception in 1995, TIMSS has been conducted every four years with an increasing number of participating countries and students each time. In 1999 U.S. eighth-graders placed #19 in the world for mathematics and #18 for science (Appendix Fig. 1). In the years following, and further detailed in the thesis, the U.S. managed to improve the overall performance by a small margin but still remained a leg behind countries like Singapore, Hong Kong, Japan, Russia, and more. Clearly these countries were doing something right as they consistently managed to rank in the top tier. Over the course of this paper we will observe and analyze why and how Singapore has topped the TIMSS list for both math and science nearly every time it has been administered over the last two decades. What is it that they are teaching their youth that enables them to perform exceptionally above the norm? Why is it that we cannot use their techniques as a guideline to increase the capabilities of our future generations? We look to uncover the teaching methods of what is known as Singapore Math and how it has helped students all over the world. By researching current U.S. schools that have already implemented the system and learning about their success stories, we hope to not only educate but also persuade the local school districts on why integrating Singapore Math into their curriculum will lead to the betterment of the lives of thousands of children and the educational threshold of this great nation.
ContributorsKichloo, Parth (Co-author) / Leverenz, Michael (Co-author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Rivera, Alfredo (Committee member) / Department of Management (Contributor) / Department of Marketing (Contributor) / Department of Finance (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
My Barrett Honors Thesis Paper synthesizes three components of my Thesis Project, which demonstrates the process of developing strong research from the beginning stage of investigation of a problem to implementation of an intervention to address that problem. Specifically, I engaged in research on the topic of mathematics and students

My Barrett Honors Thesis Paper synthesizes three components of my Thesis Project, which demonstrates the process of developing strong research from the beginning stage of investigation of a problem to implementation of an intervention to address that problem. Specifically, I engaged in research on the topic of mathematics and students with autism spectrum disorders (ASD). My review of the literature demonstrated a current dearth in the knowledge on effective interventions in math for this population of students. As part of my project, I developed and implemented an intervention to address the problem and help improve the knowledge base in the fields of autism and mathematics. Through the initial research process it was determined that students with autism spectrum disorders are being included more frequently in the general educational setting, and are therefore increasingly expected to access and master core curricular content, including mathematics. However, mathematics often presents challenges to students with ASD. Therefore, the first part of my Thesis Project is a comprehensive literature review that synthesized eleven studies of mathematics intervention strategies for students with ASD. Researching the current literature base for mathematics interventions that have been implemented with students with ASD and finding only eleven studies that met the inclusionary criteria led to the writing of the second part of my Thesis Project. In this second portion, I present how three research-based practices for students with autism, self-management, visual supports, and peer-mediated instruction, can be implemented in the context of teaching a higher-level mathematics skill, algebraic problem solving, specifically to students with ASD. By employing such strategies, teachers can assist their students with ASD to benefit more fully from mathematics interventions, which in turn may help them strengthen their mathematics skills, increase independence when completing problems, and use acquired skills in community or other applied settings. As part of the second portion of my Thesis Project, I developed a visual support strategy called COSMIC (a mnemonic device to guide learners through the steps of algebraic problem solving) to help aid students with ASD when solving simple linear equations. With the goal of contributing to the current research base of mathematics interventions that can support students with ASD, for the final part of Thesis Project I worked with a local middle school teacher to assist her in implementing our COSMIC intervention with her student with ASD. Results indicated the student improved in his algebraic problem solving skills, which suggests additional interventions with students with ASD to be recommended as part of future research.
ContributorsCleary, Shannon Taylor (Author) / Barnett, Juliet (Thesis director) / Farr, Wendy (Committee member) / Department of Finance (Contributor) / School of Film, Dance and Theatre (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
Description
The goal of this thesis is to explore and present a range of approaches to “algorithmic choreography.” In the context of this thesis, algorithmic choreography is defined as choreography with computational influence or elements. Traditionally, algorithmic choreography, despite containing works that use computation in a variety of ways, has been

The goal of this thesis is to explore and present a range of approaches to “algorithmic choreography.” In the context of this thesis, algorithmic choreography is defined as choreography with computational influence or elements. Traditionally, algorithmic choreography, despite containing works that use computation in a variety of ways, has been used as an umbrella term for all works that involve computation.
This thesis intends to show that the diversity of algorithmic choreography can be reduced into more specific categories. As algorithmic choreography is fundamentally intertwined with the concept of computation, it is natural to propose that algorithmic choreography works be separated based on a spectrum that is defined by the extent of the involvement of computation within each piece.
This thesis seeks to specifically outline three primary categories that algorithmic works can fall into: pieces that involve minimal computational influence, entirely computationally generated pieces, and pieces that lie in between. Three original works were created to reflect each of these categories. These works provide examples of the various methods by which computation can influence and enhance choreography.
The first piece, entitled Rαinwater, displays a minimal amount of computational influence. The use of space in the piece was limited to random, computationally generated paths. The dancers extracted a narrative element from the random paths. This iteration resulted in a piece that explores the dancers’ emotional interaction within the context of a rainy environment. The second piece, entitled Mymec, utilizes an intermediary amount of computation. The piece sees a dancer interact with a projected display of an Ant Colony Optimization (ACO) algorithm. The dancer is to take direct inspiration from the movement of the virtual ants and embody the visualization of the algorithm. The final piece, entitled nSkeleton, exhibited maximal computational influence. Kinect position data was manipulated using iterative methods from computational mathematics to create computer-generated movement to be performed by a dancer on-stage.
Each original piece was originally intended to be presented to the public as part of an evening-length show. However, due to the rise of the COVID-19 pandemic caused by the novel coronavirus, all public campus events have been canceled and the government has recommended that gatherings with more than 10 people be entirely avoided. Thus, the pieces will instead be presented in the form of a video published online. This video will encompass information about the creation of each piece as well as clips of choreography.
ContributorsJawaid, Zeeshan (Co-author, Co-author) / Jackson, Naomi (Thesis director) / Curry, Nicole (Committee member) / Espanol, Malena (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Dean, W.P. Carey School of Business (Contributor) / School of Film, Dance and Theatre (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131781-Thumbnail Image.png
Description
In the modern world with the ever growing importance of technology, the challenge of information security is of increasing importance. Cryptographic algorithms used to encode information stored and transmitted over the internet must be constantly improving as methodology and technology for cyber attacks improve. RSA and Elliptic Curve cryptosystems such

In the modern world with the ever growing importance of technology, the challenge of information security is of increasing importance. Cryptographic algorithms used to encode information stored and transmitted over the internet must be constantly improving as methodology and technology for cyber attacks improve. RSA and Elliptic Curve cryptosystems such as El Gamal or Diffie-Hellman key exchange are often used as secure asymmetric cryptographic algorithms. However, quantum computing threatens the security of these algorithms. A relatively new algorithm that is based on isogenies between elliptic curves has been proposed in response to this threat. The new algorithm is thought to be quantum resistant as it uses isogeny walks instead of point addition to generate a shared secret key. In this paper we will analyze this algorithm in an attempt to understand the theory behind it. A main goal is to create isogeny graphs to visualize degree 2 and 3 isogeny walks that can be taken between supersingular elliptic curves over small fields to get a better understanding of the workings and security of the algorithm.
ContributorsLoucks, Sara J (Author) / Jones, John (Thesis director) / Bremner, Andrew (Committee member) / Computer Science and Engineering Program (Contributor) / School of Film, Dance and Theatre (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05