Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

136561-Thumbnail Image.png
Description
The current model of revenue generation for some free to play video games is preventing the companies controlling them from growing, but with a few changes in approach these issues could be alleviated. A new style of video games, called a MOBA (Massive Online Battle Arena) has emerged in the

The current model of revenue generation for some free to play video games is preventing the companies controlling them from growing, but with a few changes in approach these issues could be alleviated. A new style of video games, called a MOBA (Massive Online Battle Arena) has emerged in the past few years bringing with it a new style of generating wealth. Contrary to past gaming models, where users must either purchase the game outright, view advertisements, or purchase items to gain a competitive advantage, MOBAs require no payment of any kind. These are free to play computer games that provides users with all the tools necessary to compete with anyone free of charge; no advantages can be purchased in this game. This leaves the only way for users to provide money to the company through optional purchases of purely aesthetic items, only to be purchased if the buyer wishes to see their character in a different set of attire. The genre’s best in show—called League of Legends, or LOL—has spearheaded this method of revenue-generation. Fortunately for LOL, its level of popularity has reached levels never seen in video games: the world championships had more viewers than game 7 of the NBA Finals (Dorsey). The player base alone is enough to keep the company afloat currently, but the fact that they only convert 3.75% of the players into revenue is alarming. Each player brings the company an average of $1.32, or 30% of what some other free to play games earn per user (Comparing MMO). It is this low per player income that has caused Riot Games, the developer of LOL, to state that their e-sports division is not currently profitable. To resolve this issue, LOL must take on a more aggressive marketing plan. Advertisements for the NBA Finals cost $460,000 for 30 seconds, and LOL should aim for ads in this range (Lombardo). With an average of 3 million people logged on at any time, 90% of the players being male and 85% being between the ages of 16 and 30, advertising via this game would appeal to many companies, making a deal easy to strike (LOL infographic 2012). The idea also appeals to players: 81% of players surveyed said that an advertisement on the client that allows for the option to place an order would improve or not impact their experience. Moving forward with this, the gaming client would be updated to contain both an option to order pizza and an advertisement for Mountain Dew. This type of advertising was determined based on community responses through a sequence of survey questions. These small adjustments to the game would allow LOL to generate enough income for Riot Games to expand into other areas of the e-sports industry.
ContributorsSeip, Patrick (Co-author) / Zhao, BoNing (Co-author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Barrett, The Honors College (Contributor) / Sandra Day O'Connor College of Law (Contributor) / Department of Economics (Contributor) / Department of Supply Chain Management (Contributor)
Created2015-05
135668-Thumbnail Image.png
Description
In the medical industry, there have been promising advances in the increase of new types of healthcare to the public. As of 2015, there was a 98% Premarket Approval rate, a 38% increase since 2010. In addition, there were 41 new novel drugs approved for clinical usage in 2014 where

In the medical industry, there have been promising advances in the increase of new types of healthcare to the public. As of 2015, there was a 98% Premarket Approval rate, a 38% increase since 2010. In addition, there were 41 new novel drugs approved for clinical usage in 2014 where the average in the previous years from 2005-2013 was 25. However, the research process towards creating and delivering new healthcare to the public remains remarkably inefficient. It takes on average 15 years, over $900 million by one estimate, for a less than 12% success rate of discovering a novel drug for clinical usage. Medical devices do not fare much better. Between 2005-2009, there were over 700 recalls per year. In addition, it takes at minimum 3.25 years for a 510(k) exempt premarket approval. Plus, a time lag exists where it takes 17 years for only 14% of medical discoveries to be implemented clinically. Coupled with these inefficiencies, government funding for medical research has been decreasing since 2002 (2.5% of Gross Domestic Product) and is predicted to be 1.5% of Gross Domestic Product by 2019. Translational research, the conversion of bench-side discoveries to clinical usage for a simplistic definition, has been on the rise since the 1990s. This may be driving the increased premarket approvals and new novel drug approvals. At the very least, it is worth considering as translational research is directly related towards healthcare practices. In this paper, I propose to improve the outcomes of translational research in order to better deliver advancing healthcare to the public. I suggest Best Value Performance Information Procurement System (BV PIPS) should be adapted in the selection process of translational research projects to fund. BV PIPS has been shown to increase the efficiency and success rate of delivering projects and services. There has been over 17 years of research with $6.3 billion of projects and services delivered showing that BV PIPS has a 98% customer satisfaction, 90% minimized management effort, and utilizes 50% less manpower and effort. Using University of Michigan \u2014 Coulter Foundation Program's funding process as a baseline and standard in the current selection of translational research projects to fund, I offer changes to this process based on BV PIPS that may ameliorate it. As concepts implemented in this process are congruent with literature on successful translational research, it may suggest that this new model for selecting translational research projects to fund will reduce costs, increase efficiency, and increase success. This may then lead to more Premarket Approvals, more new novel drug approvals, quicker delivery time to the market, and lower recalls.
ContributorsDel Rosario, Joseph Paul (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05