Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 5 of 5
Filtering by

Clear all filters

Description
In eukaryotes, most messenger RNA precursors (pre-mRNA) undergo extensive processing, leading to the cleavage of the transcript followed by the addition of a poly(A) tail. This process is executed by a large complex known as the Cleavage and Polyadenylation Complex (CPC). Its central subcomplex, the Cleavage and Polyadenylation Specificity Factor

In eukaryotes, most messenger RNA precursors (pre-mRNA) undergo extensive processing, leading to the cleavage of the transcript followed by the addition of a poly(A) tail. This process is executed by a large complex known as the Cleavage and Polyadenylation Complex (CPC). Its central subcomplex, the Cleavage and Polyadenylation Specificity Factor (CPSF) complex is responsible for recognizing a short hexameric element AAUAAA located at the 3’end in the nascent mRNA molecule and catalyzing the pre-mRNA cleavage. In the round nematode C. elegans, the cleavage reaction is executed by a subunit of this complex named CPSF3, a highly conserved RNA endonuclease. While the crystal structure of its human ortholog CPSF73 has been recently identified, we still do not understand the molecular mechanisms and sequence specificity used by this protein to induce cleavage, which in turn would help to understand how this process is executed in detail. Additionally, we do not understand in additional factors are needed for this process. In order to address these issues, we performed a comparative analysis of the CPSF3 protein in higher eukaryotes to identify conserved functional domains. The overall percent identities for members of the CPSF complex range from 33.68% to 56.49%, suggesting that the human and C. elegans orthologs retain a high level of conservation. CPSF73 is the protein with the overall highest percent identity of the CPSF complex, with its active site-containing domain possessing 74.60% identity with CPSF3. Additionally, we gathered and expressed using a bacterial expression system CPSF3 and a mutant, which is unable to perform the cleavage reaction, and developed an in vitro cleavage assay to test whether CPSF3 activity is necessary and sufficient to induce nascent mRNA cleavage. This project establishes tools to better understand how CPSF3 functions within the CPC and sheds light on the biology surrounding the transcription process as a whole.
ContributorsGallante, Christina (Author) / Mangone, Marco (Thesis director) / Sharma, Shalini (Committee member) / Hrach, Heather (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132081-Thumbnail Image.png
Description
Transient receptor potential (TRP) channels are a superfamily of ion channels found in plasma membranes of both single-celled and multicellular organisms. TRP channels all share the common aspect of having six transmembrane helices and a TRP domain. These structures tetramerize to form a receptor-activated non-selective ion channel. The specific protein

Transient receptor potential (TRP) channels are a superfamily of ion channels found in plasma membranes of both single-celled and multicellular organisms. TRP channels all share the common aspect of having six transmembrane helices and a TRP domain. These structures tetramerize to form a receptor-activated non-selective ion channel. The specific protein being investigated in this thesis is the human transient receptor potential melastatin 8 (hTRPM8), a channel activated by the chemical ligand menthol and temperatures below 25 °C. TRPM8 is responsible for cold sensing and is related to pain relief associated with cooling compounds. TRPM8 has also been found to play a role in the regulation of various types of tumors. The structure of TRPM8 has been obtained through cryo-electron microscopy, but the functional contribution of individual portions of the protein to the overall protein function is unknown.
To gain more information about the function of the transmembrane region of hTRPM8, it was expressed in Escherichia coli (E. coli) and purified in detergent membrane mimics for experimentation. The construct contains the S4-S5 linker, pore domain (S5 and S6 transmembrane helices), pore helix, and TRP box. hTRPM8-PD+ was purified in the detergents n-Dodecyl-B-D-Maltoside (DDM), 16:0 Lyso PG, 1-Palmitoyl-2-hydroxy-sn-glycero-3-phosphoglycerol (LPPG), and 14:0 Lyso PG, 1-Myristoyl-2-hydroxy-sn-glycero-3-phosphoglycerol (LMPG) to determine which detergent resulted in a hTRPM8-PD+ sample of the most stability, purity, and highest concentrations. Following bacterial expression and protein purification, hTRPM8-PD+ was studied and characterized with circular dichroism (CD) spectroscopy to learn more about the secondary structures and thermodynamic properties of the construct. Further studies can be done with more circular dichroism (CD) spectroscopy, planar lipid bilayer (BLM) electrophysiology, and nuclear magnetic resonance spectroscopy (NMR) to gain more understanding of how the pore domain plus contributes to the activity of the whole protein construct.
ContributorsMorelan, Danielle Taylor (Co-author) / Morelan, Danielle (Co-author) / Van Horn, Wade (Thesis director) / Chen, Julian (Committee member) / Luu, Dustin (Committee member) / Dean, W.P. Carey School of Business (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
131872-Thumbnail Image.png
Description
Enzyme Replacement Therapy (ERT) is a treatment often used for patients with disorders that affect the production of various enzymes within the body, such as Cystic Fibrosis and Fabry Disease. ERT involves the use of artificially-produced enzymes, which can be derived from humans, pigs, and bacteria. Generally, enzymes derived from

Enzyme Replacement Therapy (ERT) is a treatment often used for patients with disorders that affect the production of various enzymes within the body, such as Cystic Fibrosis and Fabry Disease. ERT involves the use of artificially-produced enzymes, which can be derived from humans, pigs, and bacteria. Generally, enzymes derived from porcine and bacterial sources are much less expensive and more accessible than those derived from a human source. This, and the ethical implications that porcine enzymes carry, make the decision of choosing treatment simple to some and complex to others. Ethically, human-derived enzymes are often considered more ethical, while not conflicting with religious beliefs and practices as porcine-derived enzymes do.
In order to further compare porcine and human-derived enzymes, a determination of the enzyme effectiveness was done via digestion simulation. The digestion for both the human and porcine-derived enzymes consisted of three steps: oral, gastric, and intestinal. After the digestion, the absorbance for each enzyme class as well as a dilution curve of the formula used was read and recorded. Using the standard dilution curve and the absorbance values for each unknown, the formula and thus enzyme concentration that was lost through the reaction was able to be calculated.
The effectiveness of both the human and porcine enzymes, determined by the percent of formula lost, was 18.2% and 19.7%, respectively, with an error of 0.6% from the spectrophotometer, and an error of about 10% from the scale used for measuring the enzymes. This error was likely due to the small mass required of the enzymes and can be prevented in the future by performing the experiment at a larger scale.
ContributorsBlevins, Brianna R (Author) / Martin, Thomas (Thesis director) / McILwraith, Heide (Committee member) / College of Integrative Sciences and Arts (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131161-Thumbnail Image.png
Description
The goal of this thesis was to simplify the sample preparation process for cryogenic electron microscopy (cryo-EM), clearing the way for the imaging of larger biomolecules and further expansion of the field. Various protic ionic liquids (PILs) were chosen for synthesis according to their pH and other physical properties. After

The goal of this thesis was to simplify the sample preparation process for cryogenic electron microscopy (cryo-EM), clearing the way for the imaging of larger biomolecules and further expansion of the field. Various protic ionic liquids (PILs) were chosen for synthesis according to their pH and other physical properties. After several failed synthesizes, one PIL, cholinium dihydrogen phosphate, was chosen for further testing. This solution was put through a series of vitrification tests in order to understand its crystallization limits. Once limits were understood, cholinium dihydrogen phosphate was combined with ribosomal proteins and viewed under a transmission electron microscope to collect negative stain images. After adjusting the ratio of PIL to buffer and the concentration of ribosomes, images of whole intact ribosomes were captured. Samples were then placed in an EM grid, manually dipped in liquid nitrogen, and viewed using the the cryo-EM. These grids revealed ice too thick to properly image, an issue that was not solved by using a more aggressive blotting technique. Although the sample preparation process was not simplified, progress was made towards doing so and further testing using different techniques may result in success.
ContributorsStreet, Maya Ann (Author) / Angell, Charles Austen (Thesis director) / Chiu, Po-Lin (Committee member) / Materials Science and Engineering Program (Contributor) / School of Molecular Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131238-Thumbnail Image.png
Description
DNA nanotechnology uses the reliability of Watson-Crick base pairing to program and generate two-dimensional and three-dimensional nanostructures using single-stranded DNA as the structural material. DNA nanostructures show great promise for the future of bioengineering, as there are a myriad of potential applications that utilize DNA’s chemical interactivity and ability to

DNA nanotechnology uses the reliability of Watson-Crick base pairing to program and generate two-dimensional and three-dimensional nanostructures using single-stranded DNA as the structural material. DNA nanostructures show great promise for the future of bioengineering, as there are a myriad of potential applications that utilize DNA’s chemical interactivity and ability to bind other macromolecules and metals. DNA origami is a method of constructing nanostructures, which consists of a long “scaffold” strand folded into a shape by shorter “staple” oligonucleotides. Due to the negative charge of DNA molecules, divalent cations, most commonly magnesium, are required for origami to form and maintain structural integrity. The experiments in this paper address the discrepancy between salt concentrations required for origami stability and the salt concentrations present in living systems. The stability of three structures, a two-dimensional triangle, a three-dimensional solid cuboid and a three-dimensional wireframe icosahedron were examined in buffer solutions containing various concentrations of salts. In these experiments, DNA origami structures remained intact in low-magnesium conditions that emulate living cells, supporting their potential for widespread biological application in the future.
ContributorsSeverson, Grant William (Author) / Stephanopoulos, Nicholas (Thesis director) / Mills, Jeremy (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05