Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 170
Filtering by

Clear all filters

133909-Thumbnail Image.png
Description
The field of robotics is rapidly expanding, and with it, the methods of teaching and introducing students must also advance alongside new technologies. There is a challenge in robotics education, especially at high school levels, to expose them to more modern and practical robots. One way to bridge this ga

The field of robotics is rapidly expanding, and with it, the methods of teaching and introducing students must also advance alongside new technologies. There is a challenge in robotics education, especially at high school levels, to expose them to more modern and practical robots. One way to bridge this gap is human-robot interaction for a more hands-on and impactful experience that will leave students more interested in pursuing the field. Our project is a Robotic Head Kit that can be used in an educational setting to teach about its electrical, mechanical, programming, and psychological concepts. We took an existing robot head prototype and further advanced it so it can be easily assembled while still maintaining human complexity. Our research for this project dove into the electronics, mechanics, software, and even psychological barriers present in order to advance the already existing head design. The kit we have developed combines the field of robotics with psychology to create and add more life-like features and functionality to the robot, nicknamed "James Junior." The goal of our Honors Thesis was to initially fix electrical, mechanical, and software problems present. We were then tasked to run tests with high school students to validate our assembly instructions while gathering their observations and feedback about the robot's programmed reactions and emotions. The electrical problems were solved with custom PCBs designed to power and program the existing servo motors on the head. A new set of assembly instructions were written and modifications to the 3D printed parts were made for the kit. In software, existing code was improved to implement a user interface via keypad and joystick to give students control of the robot head they construct themselves. The results of our tests showed that we were not only successful in creating an intuitive robot head kit that could be easily assembled by high school students, but we were also successful in programming human-like expressions that could be emotionally perceived by the students.
ContributorsRathke, Benjamin (Co-author) / Rivera, Gerardo (Co-author) / Sodemann, Angela (Thesis director) / Itagi, Manjunath (Committee member) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135562-Thumbnail Image.png
Description
Since Dylan Roof, a white supremacist, shot and killed nine members of a black church in Charleston on June 17, 2015, Confederate symbols have stood at the center of much controversy across the United States. Although the Confederate battle flag remains the most obvious example, the debate took a particular

Since Dylan Roof, a white supremacist, shot and killed nine members of a black church in Charleston on June 17, 2015, Confederate symbols have stood at the center of much controversy across the United States. Although the Confederate battle flag remains the most obvious example, the debate took a particular form in Tennessee, centering on the image of General Nathan Bedford Forrest. Born in 1822 to a poor family, he left school early to work. Although his work in the slave trade made him a millionaire, his later participation in the massacre of over 300 black soldiers at Fort Pillow in 1864 during the Civil War and association with the Ku Klux Klan cemented his reputation as a violent racist. Yet, many white Tennesseans praised him as a hero and memorialized him. This thesis examines Nathan Bedford Forrest State Park in Benton County and Forrest Park, now Health Sciences Park, in Memphis to examine what characteristics denote a controversial memorial. Specifically, I focus on the physical form, the location, and the demographics of the area, investigating how these components work together to give rise to controversy or acceptance of the memorial's image. Physical representations greatly impact the ideas associated with the memorial while racial demographics affect whether or not Forrest's representation as a hero speaks true to modern interpretations and opinions.
Created2016-05
135188-Thumbnail Image.png
Description
Space microbiology, or the study of microorganisms in space, has significant applications for both human spaceflight and Earth-based medicine. This thesis traces the evolution of the field of space microbiology since its creation in 1935. Beginning with simple studies to determine if terrestrial life could survive spaceflight, the field of

Space microbiology, or the study of microorganisms in space, has significant applications for both human spaceflight and Earth-based medicine. This thesis traces the evolution of the field of space microbiology since its creation in 1935. Beginning with simple studies to determine if terrestrial life could survive spaceflight, the field of space microbiology has grown to encompass a substantial body of work that is now recognized as an essential component of NASA' research endeavors. Part one provides an overview of the early period of space microbiology, from high-altitude balloon and rocket studies to work conducted during the Apollo program. Part two summarizes the current state of the field, with a specific focus on the revolutionary contributions made by the Nickerson lab at the Biodesign Institute at ASU using the NASA-designed Rotating Wall Vessel (RWV) Bioreactor. Finally, part three highlights the research I've conducted in the Nickerson lab, as well as continuing studies within the field of space microbiology.
ContributorsMcCarthy, Breanne E. (Author) / Lynch, John (Thesis director) / Foy, Joseph (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134286-Thumbnail Image.png
Description
Many researchers aspire to create robotics systems that assist humans in common office tasks, especially by taking over delivery and messaging tasks. For meaningful interactions to take place, a mobile robot must be able to identify the humans it interacts with and communicate successfully with them. It must also be

Many researchers aspire to create robotics systems that assist humans in common office tasks, especially by taking over delivery and messaging tasks. For meaningful interactions to take place, a mobile robot must be able to identify the humans it interacts with and communicate successfully with them. It must also be able to successfully navigate the office environment. While mobile robots are well suited for navigating and interacting with elements inside a deterministic office environment, attempting to interact with human beings in an office environment remains a challenge due to the limits on the amount of cost-efficient compute power onboard the robot. In this work, I propose the use of remote cloud services to offload intensive interaction tasks. I detail the interactions required in an office environment and discuss the challenges faced when implementing a human-robot interaction platform in a stochastic office environment. I also experiment with cloud services for facial recognition, speech recognition, and environment navigation and discuss my results. As part of my thesis, I have implemented a human-robot interaction system utilizing cloud APIs into a mobile robot, enabling it to navigate the office environment, identify humans within the environment, and communicate with these humans.
Created2017-05
135340-Thumbnail Image.png
Description
Preventive maintenance is a practice that has become popular in recent years, largely due to the increased dependency on electronics and other mechanical systems in modern technologies. The main idea of preventive maintenance is to take care of maintenance-type issues before they fully appear or cause disruption of processes and

Preventive maintenance is a practice that has become popular in recent years, largely due to the increased dependency on electronics and other mechanical systems in modern technologies. The main idea of preventive maintenance is to take care of maintenance-type issues before they fully appear or cause disruption of processes and daily operations. One of the most important parts is being able to predict and foreshadow failures in the system, in order to make sure that those are fixed before they turn into large issues. One specific area where preventive maintenance is a very big part of daily activity is the automotive industry. Automobile owners are encouraged to take their cars in for maintenance on a routine schedule (based on mileage or time), or when their car signals that there is an issue (low oil levels for example). Although this level of maintenance is enough when people are in charge of cars, the rise of autonomous vehicles, specifically self-driving cars, changes that. Now instead of a human being able to look at a car and diagnose any issues, the car needs to be able to do this itself. The objective of this project was to create such a system. The Electronics Preventive Maintenance System is an internal system that is designed to meet all these criteria and more. The EPMS system is comprised of a central computer which monitors all major electronic components in an autonomous vehicle through the use of standard off-the-shelf sensors. The central computer compiles the sensor data, and is able to sort and analyze the readings. The filtered data is run through several mathematical models, each of which diagnoses issues in different parts of the vehicle. The data for each component in the vehicle is compared to pre-set operating conditions. These operating conditions are set in order to encompass all normal ranges of output. If the sensor data is outside the margins, the warning and deviation are recorded and a severity level is calculated. In addition to the individual focus, there's also a vehicle-wide model, which predicts how necessary maintenance is for the vehicle. All of these results are analyzed by a simple heuristic algorithm and a decision is made for the vehicle's health status, which is sent out to the Fleet Management System. This system allows for accurate, effortless monitoring of all parts of an autonomous vehicle as well as predictive modeling that allows the system to determine maintenance needs. With this system, human inspectors are no longer necessary for a fleet of autonomous vehicles. Instead, the Fleet Management System is able to oversee inspections, and the system operator is able to set parameters to decide when to send cars for maintenance. All the models used for the sensor and component analysis are tailored specifically to the vehicle. The models and operating margins are created using empirical data collected during normal testing operations. The system is modular and can be used in a variety of different vehicle platforms, including underwater autonomous vehicles and aerial vehicles.
ContributorsMian, Sami T. (Author) / Collofello, James (Thesis director) / Chen, Yinong (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135645-Thumbnail Image.png
Description
This thesis proposes the concept of soft robotic supernumerary limbs to assist the wearer in the execution of tasks, whether it be to share loads or replace an assistant. These controllable extra arms are made using soft robotics to reduce the weight and cost of the device, and are not

This thesis proposes the concept of soft robotic supernumerary limbs to assist the wearer in the execution of tasks, whether it be to share loads or replace an assistant. These controllable extra arms are made using soft robotics to reduce the weight and cost of the device, and are not limited in size and location to the user's arm as with exoskeletal devices. Soft robotics differ from traditional robotics in that they are made using soft materials such as silicone elastomers rather than hard materials such as metals or plastics. This thesis presents the design, fabrication, and testing of the arm, including the joints and the actuators to move them, as well as the design and fabrication of the human-body interface to unite man and machine. This prototype utilizes two types of pneumatically-driven actuators, pneumatic artificial muscles and fiber-reinforced actuators, to actuate the elbow and shoulder joints, respectively. The robotic limb is mounted at the waist on a backpack frame to avoid interfering with the wearer's biological arm. Through testing and evaluation, this prototype device proves the feasibility of soft supernumerary limbs, and opens up opportunities for further development into the field.
ContributorsOlson, Weston Roscoe (Author) / Polygerinos, Panagiotis (Thesis director) / Zhang, Wenlong (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136627-Thumbnail Image.png
Description
This thesis focused on understanding how humans visually perceive swarm behavior through the use of swarm simulations and gaze tracking. The goal of this project was to determine visual patterns subjects display while observing and supervising a swarm as well as determine what swarm characteristics affect these patterns. As an

This thesis focused on understanding how humans visually perceive swarm behavior through the use of swarm simulations and gaze tracking. The goal of this project was to determine visual patterns subjects display while observing and supervising a swarm as well as determine what swarm characteristics affect these patterns. As an ultimate goal, it was hoped that this research will contribute to optimizing human-swarm interaction for the design of human supervisory controllers for swarms. To achieve the stated goals, two investigations were conducted. First, subjects gaze was tracked while observing a simulated swarm as it moved across the screen. This swarm changed in size, disturbance level in the position of the agents, speed, and path curvature. Second, subjects were asked to play a supervisory role as they watched a swarm move across the screen toward targets. The subjects determined whether a collision would occur and with which target while their responses as well as their gaze was tracked. In the case of an observatory role, a model of human gaze was created. This was embodied in a second order model similar to that of a spring-mass-damper system. This model was similar across subjects and stable. In the case of a supervisory role, inherent weaknesses in human perception were found, such as the inability to predict future position of curved paths. These findings are discussed in depth within the thesis. Overall, the results presented suggest that understanding human perception of swarms offers a new approach to the problem of swarm control. The ability to adapt controls to the strengths and weaknesses could lead to great strides in the reduction of operators in the control of one UAV, resulting in a move towards one man operation of a swarm.
ContributorsWhitton, Elena Michelle (Author) / Artemiadis, Panagiotis (Thesis director) / Berman, Spring (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
136662-Thumbnail Image.png
Description
Interaction is key to education, as students who perform their own inquiry into a subject retain information longer. The field of interactive fiction, which emphasizes personal decision making and freedom of choice, is ripe for opportunity as it is relatively simple to develop and deploy to audiences of any size.

Interaction is key to education, as students who perform their own inquiry into a subject retain information longer. The field of interactive fiction, which emphasizes personal decision making and freedom of choice, is ripe for opportunity as it is relatively simple to develop and deploy to audiences of any size. However, few interactive fiction platforms exist with the openness and flexibility required for classroom use. My project attempted to create an interactive fiction platform that can be created for and engaged with by both teachers and students. This led to the creation of an interactive fiction platform that conforms to a variety of requirements, such as openness and compatibility across multiple platforms, and which can display meaningful content. This was accomplished by someone with a content area education background and only limited computer science experience, and shows promise for similar future endeavors.
ContributorsWilley, Kyle Allen (Author) / Bruhn, Karen (Thesis director) / Foy, Joseph (Committee member) / Viles, Rebecca (Committee member) / Barrett, The Honors College (Contributor) / Division of Teacher Preparation (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor)
Created2014-12
136727-Thumbnail Image.png
Description
The Phoenix Coyotes entered bankruptcy and NHL stewardship in 2009 because of poor initial planning, short-sighted private ownership, and geographical constraints associated with the team's location in Glendale. The subsequent sale process extended from 2009-2013 and included multiple potential suitors, municipal politics, and international finance as the NHL fought to

The Phoenix Coyotes entered bankruptcy and NHL stewardship in 2009 because of poor initial planning, short-sighted private ownership, and geographical constraints associated with the team's location in Glendale. The subsequent sale process extended from 2009-2013 and included multiple potential suitors, municipal politics, and international finance as the NHL fought to keep the troubled franchise in Phoenix.
ContributorsPorter, Brendan Francis (Author) / Simpson, Brooks (Thesis director) / Lynch, John (Committee member) / Barrett, The Honors College (Contributor) / School of Politics and Global Studies (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor)
Created2014-12
136738-Thumbnail Image.png
Description
The Walt Disney Company has been a worldwide phenomenon for over half a century. Disney's animated films in particular impact a large number of individuals around the world. The fact that they rerelease popular films every few years lends to the lasting influence these movies will hold in the lives

The Walt Disney Company has been a worldwide phenomenon for over half a century. Disney's animated films in particular impact a large number of individuals around the world. The fact that they rerelease popular films every few years lends to the lasting influence these movies will hold in the lives of children to come. It is important to examine the messages Disney animated films can teach children in regards to women's roles, United States history, and racial difference. This essay examines these topics as they appear in Disney's Snow White and the Seven Dwarves, The Little Mermaid, Pocahontas, and The Lion King. Lastly, it examines the potential impact these films can leave on children and suggests ways in which adults can help children analyze what they see in the media.
ContributorsMonnig, Elizabeth Ann (Author) / Baker, Aaron (Thesis director) / Sandlin, Jennifer (Committee member) / Barrett, The Honors College (Contributor) / School of Film, Dance and Theatre (Contributor) / Department of English (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor)
Created2014-12