Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 4 of 4
Filtering by

Clear all filters

137514-Thumbnail Image.png
Description

The purpose of this study, which was done in conjunction with the Arizona Heart Foundation, was to evaluate whether pyridoxine accelerates ulcer wound healing in diabetic patients with ulcers in the lower extremities. In this study, 100 mg of pyridoxine per day was given to patients in the experimental grou

The purpose of this study, which was done in conjunction with the Arizona Heart Foundation, was to evaluate whether pyridoxine accelerates ulcer wound healing in diabetic patients with ulcers in the lower extremities. In this study, 100 mg of pyridoxine per day was given to patients in the experimental group (while they receive normal wound treatment) while patients in the control group received normal treatment of wounds without the pyridoxine. Over time, wound healing was evaluated by photographing and then measuring the size of patients' ulcer wounds on the photographs. Results from the experimental group were compared with those of the control group to evaluate the efficacy of the pyridoxine treatment. In addition, comparisons of the healing rates were made with respect to whether the patients smoked, had hypertension or hypotension, and the patients' body mass indexes. It has been found that there was no statistically significant difference in the mean healing rates between the control groups and experimental groups. In addition, it has been found that smoking, BMI and blood pressure did not have a statistically appreciable effect on the difference in mean healing rates between the control and experimental groups. This is evidence that pyridoxine did not have a statistically significant effect on wound healing rates.

ContributorsHaupt, Shawn Anthony (Author) / Caplan, Michael (Thesis director) / Pauken, Christine (Committee member) / Pagan, Pedro (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
137187-Thumbnail Image.png
Description
Diabetes is a growing epidemic in developing countries, specifically in rural Kenya. In addition to the high cost of glucose testing, many diabetics in Kenya do not understand the importance of testing their blood glucose, let alone the nature of the disease. This project addresses the insufficiency of educational materials

Diabetes is a growing epidemic in developing countries, specifically in rural Kenya. In addition to the high cost of glucose testing, many diabetics in Kenya do not understand the importance of testing their blood glucose, let alone the nature of the disease. This project addresses the insufficiency of educational materials regarding diabetes in rural Kenya. The resulting documents can easily be adjusted for use in other developing countries.
ContributorsBuchak, Jacqueline (Author) / Caplan, Michael (Thesis director) / Snyder, Jan (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
134616-Thumbnail Image.png
Description
Type II diabetes is a serious, chronic metabolic disease that has serious impacts on both the health and quality of life in patients diagnosed with the disease. Type II diabetes is also a very prevalent disease both in the United States and around the world. There is still a lot

Type II diabetes is a serious, chronic metabolic disease that has serious impacts on both the health and quality of life in patients diagnosed with the disease. Type II diabetes is also a very prevalent disease both in the United States and around the world. There is still a lot that is unknown about Type II diabetes, and this study will aim to answer some of these questions. The question posed in this study is whether insulin resistance changes as a function of time after the start of a high fat diet. We hypothesized that peripheral insulin resistance would be observed in animals placed on a high fat diet; and peripheral insulin resistance would have a positive correlation with time. In order to test the hypotheses, four Sprague-Dawley male rats were placed on a high fat diet for 8 weeks, during which time they were subjected to three intraperitonal insulin tolerance tests ((NovoLogTM 1 U/kg). These three tests were conducted at baseline (week 1), week 4, and week 8 of the high fat diet. The test consisted of serially determining plasma glucose levels via a pin prick methodology, and exposing a droplet of blood to the test strip of a glucometer (ACCUCHEKTM, Roche Diagnostics). Two plasma glucose baselines were taken, and then every 15 minutes following insulin injection for one hour. Glucose disposal rates were then calculated by simply dividing the glucose levels at each time point by the baseline value, and multiplying by 100. Area under the curve data was calculated via definite integral. The area under the curve data was then subjected to a single analysis of variance (ANOVA), with a statistical significance threshold of p<0.05. The results of the study did not indicate the development of peripheral insulin resistance in the animals placed on a high fat diet. Insulin-mediated glucose disposal was about 50% at 30 minutes in all four animals, during all three testing periods. Furthermore, the ANOVA resulted in p=0.92, meaning that the data was not statistically significant. In conclusion, peripheral insulin resistance was not observed in the animals, meaning no determination could be made on the relation between time and insulin resistance.
ContributorsBrown, Kellen Andrew (Author) / Caplan, Michael (Thesis director) / Herman, Richard (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135698-Thumbnail Image.png
Description
Traumatic brain injury (TBI) is a leading cause of injury related death in the United States. The complexity of the injury environment that follows TBI creates an incomplete understanding of all the mechanisms in place to regulate chemotactic responses to TBI. The goal of this project was to develop a

Traumatic brain injury (TBI) is a leading cause of injury related death in the United States. The complexity of the injury environment that follows TBI creates an incomplete understanding of all the mechanisms in place to regulate chemotactic responses to TBI. The goal of this project was to develop a predictive in silco model using diffusion and autocrine/paracrine signaling specific to stromal cell derived factor-1α (SDF-1α) gradient formation after TBI and compare this model with in vivo experimental data. A COMSOL model using Fickian diffusion and autocrine/paracrine reaction terms was generated to predict the gradient formation observed in vivo at three physiologically relevant time points (1, 3, and 7 days). In vivo data was gathered and analyzed via immunohistochemistry and MATLAB. The spatial distribution of SDF-1α concentration in vivo more consistently demonstrated patterns similar to the in silico model dependent on both diffusion and autocrine/paracrine reaction terms rather than diffusion alone. The temporal distribution of these same results demonstrated degradation of SDF-1α at too rapid a rate, compared to the in vivo results. To account for differences in behavior observed in vivo, reaction terms and constants of 1st-order reaction rates must be modulated to better reflect the results observed in vivo. These results from both the in silico model and in vivo data support the hypothesis that SDF-1α gradient formation after TBI depends on more than diffusion alone. Future work will focus on improving the model with constants that are specific to SDF-1α as well as testing methods to better control the degradation of SDF-1α.
ContributorsFreeman, Sabrina Louise (Author) / Stabenfeldt, Sarah (Thesis director) / Caplan, Michael (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05