Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 6 of 6
Filtering by

Clear all filters

134556-Thumbnail Image.png
Description
Operation Toothbrush is an initiative established to combat the oral healthcare disparity within young children who reside in Arizona. By working with elementary and preschool children, the project educated them and their families about the importance of oral hygiene in informative and intuitive manner. The project incorporated the help of

Operation Toothbrush is an initiative established to combat the oral healthcare disparity within young children who reside in Arizona. By working with elementary and preschool children, the project educated them and their families about the importance of oral hygiene in informative and intuitive manner. The project incorporated the help of Pre-Dental volunteers, dental practices, and the Woodside Grant to obtain the supplies, information, and assistance necessary to conduct the initiative.
ContributorsTsiperfal, Nathan (Co-author) / Mansukhani, Kunal (Co-author) / Virdee, Gitika (Co-author) / Loebenberg, Abby (Thesis director) / Ostling, Michael (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution and Social Change (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134533-Thumbnail Image.png
Description
Learning to program is no easy task, and many students experience their first programming during their university education. Unfortunately, programming classes have a large number of students enrolled, so it is nearly impossible for professors to associate with the students at an individual level and provide the personal attention each

Learning to program is no easy task, and many students experience their first programming during their university education. Unfortunately, programming classes have a large number of students enrolled, so it is nearly impossible for professors to associate with the students at an individual level and provide the personal attention each student needs. This project aims to provide professors with a tool to quickly respond to the current understanding of the students. This web-based application gives professors the control to quickly ask Java programming questions, and the ability to see the aggregate data on how many of the students have successfully completed the assigned questions. With this system, the students are provided with extra programming practice in a controlled environment, and if there is an error in their program, the system will provide feedback describing what the error means and what steps the student can take to fix it.
ContributorsVillela, Daniel Linus (Author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Hsiao, Sharon (Committee member) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134100-Thumbnail Image.png
Description
Can a skill taught in a virtual environment be utilized in the physical world? This idea is explored by creating a Virtual Reality game for the HTC Vive to teach users how to play the drums. The game focuses on developing the user's muscle memory, improving the user's ability to

Can a skill taught in a virtual environment be utilized in the physical world? This idea is explored by creating a Virtual Reality game for the HTC Vive to teach users how to play the drums. The game focuses on developing the user's muscle memory, improving the user's ability to play music as they hear it in their head, and refining the user's sense of rhythm. Several different features were included to achieve this such as a score, different levels, a demo feature, and a metronome. The game was tested for its ability to teach and for its overall enjoyability by using a small sample group. Most participants of the sample group noted that they felt as if their sense of rhythm and drumming skill level would improve by playing the game. Through the findings of this project, it can be concluded that while it should not be considered as a complete replacement for traditional instruction, a virtual environment can be successfully used as a learning aid and practicing tool.
ContributorsDinapoli, Allison (Co-author) / Tuznik, Richard (Co-author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Computer Science and Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
135016-Thumbnail Image.png
Description
Programming is quickly becoming as ubiquitous a tool as general mathematics. The technology field is progressing at an exponential rate and driving this constantly evolving field forward requires competent software developers. Elementary and high school educational facilities do not currently express the importance of the computer science field. Computer science

Programming is quickly becoming as ubiquitous a tool as general mathematics. The technology field is progressing at an exponential rate and driving this constantly evolving field forward requires competent software developers. Elementary and high school educational facilities do not currently express the importance of the computer science field. Computer science is not a required course in high school and nearly impossible to find at a middle school level. This lack of exposure to the field at a young age handicaps aspiring developers by not providing them with a foundation to build on when seeking a degree. This paper revolves around the development of a virtual world that encompasses principles of programming in a video game structure. The use of a virtual world-based game was chosen under the hypothesis that embedding programming instruction into a game through problem-based learning is more likely to engage young students than more traditional forms of instruction. Unlike the traditional method of instruction, a virtual world allows us to "deceive" the player into learning concepts by implicitly educating them through fun gameplay mechanics. In order to make our video game robust and self-sufficient, we have developed a predictive recursive descent parser that will validate any user-generated solutions to pre-defined logical platforming puzzles. Programming topics taught with these problems range from binary numbers to while and for loops.
ContributorsWest, Grant (Co-author) / Kury, Nizar (Co-author) / Nelson, Brian (Thesis director) / Kobayashi, Yoshihiro (Committee member) / Computer Science and Engineering Program (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134971-Thumbnail Image.png
Description
This thesis investigates students' learning behaviors through their interaction with an educational technology, Web Programming Grading Assistant. The technology was developed to facilitate the grading of paper-based examinations in large lecture-based classrooms and to provide richer and more meaningful feedback to students. A classroom study was designed and data was

This thesis investigates students' learning behaviors through their interaction with an educational technology, Web Programming Grading Assistant. The technology was developed to facilitate the grading of paper-based examinations in large lecture-based classrooms and to provide richer and more meaningful feedback to students. A classroom study was designed and data was gathered from an undergraduate computer-programming course in the fall of 2016. Analysis of the data revealed that there was a negative correlation between time lag of first review attempt and performance. A survey was developed and disseminated that gave insight into how students felt about the technology and what they normally do to study for programming exams. In conclusion, the knowledge gained in this study aids in the quest to better educate students in computer programming in large in-person classrooms.
ContributorsMurphy, Hannah (Author) / Hsiao, Ihan (Thesis director) / Nelson, Brian (Committee member) / School of Computing, Informatics, and Decision Systems Engineering (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
Education of any skill based subject, such as mathematics or language, involves a significant amount of repetition and pratice. According to the National Survey of Student Engagements, students spend on average 17 hours per week reviewing and practicing material previously learned in a classroom, with higher performing students showing a

Education of any skill based subject, such as mathematics or language, involves a significant amount of repetition and pratice. According to the National Survey of Student Engagements, students spend on average 17 hours per week reviewing and practicing material previously learned in a classroom, with higher performing students showing a tendency to spend more time practicing. As such, learning software has emerged in the past several decades focusing on providing a wide range of examples, practice problems, and situations for users to exercise their skills. Notably, math students have benefited from software that procedurally generates a virtually infinite number of practice problems and their corresponding solutions. This allows for instantaneous feedback and automatic generation of tests and quizzes. Of course, this is only possible because software is capable of generating and verifying a virtually endless supply of sample problems across a wide range of topics within mathematics. While English learning software has progressed in a similar manner, it faces a series of hurdles distinctly different from those of mathematics. In particular, there is a wide range of exception cases present in English grammar. Some words have unique spellings for their plural forms, some words have identical spelling for plural forms, and some words are conjugated differently for only one particular tense or person-of-speech. These issues combined make the problem of generating grammatically correct sentences complicated. To compound to this problem, the grammar rules in English are vast, and often depend on the context in which they are used. Verb-tense agreement (e.g. "I eat" vs "he eats"), and conjugation of irregular verbs (e.g. swim -> swam) are common examples. This thesis presents an algorithm designed to randomly generate a virtually infinite number of practice problems for students of English as a second language. This approach differs from other generation approaches by generating based on a context set by educators, so that problems can be generated in the context of what students are currently learning. The algorithm is validated through a study in which over 35 000 sentences generated by the algorithm are verified by multiple grammar checking algorithms, and a subset of the sentences are validated against 3 education standards by a subject matter expert in the field. The study found that this approach has a significantly reduced grammar error ratio compared to other generation algorithms, and shows potential where context specification is concerned.
ContributorsMoore, Zachary Christian (Author) / Amresh, Ashish (Thesis director) / Nelson, Brian (Committee member) / Software Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05