Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

132377-Thumbnail Image.png
Description
Educational institutions are in a unique position to take advantage of computers and software in new, innovative ways. The Mechanics Project at Arizona State University has done an exceptional job integrating many new ways of engaging students and providing resources that can help them learn course material in a way

Educational institutions are in a unique position to take advantage of computers and software in new, innovative ways. The Mechanics Project at Arizona State University has done an exceptional job integrating many new ways of engaging students and providing resources that can help them learn course material in a way that they can understand. However, there is still very little research on how to best compose multimedia content for student use.

This project aims to determine what students struggle with in these courses and develop multimedia content to support their education in Dynamics specifically.
Created2019-05
131873-Thumbnail Image.png
Description
As structural engineers in practice continue to improve their methods and advance their analysis and design techniques through the use of new technology, how should structural engineering education programs evolve as well to match the increasing complexity of the industry? This thesis serves to analyze the many differing opinions and

As structural engineers in practice continue to improve their methods and advance their analysis and design techniques through the use of new technology, how should structural engineering education programs evolve as well to match the increasing complexity of the industry? This thesis serves to analyze the many differing opinions and techniques on modernizing structural engineering education programs through a literature review on the content put out by active structural engineering education reform committees, articles and publications by well-known educators and practitioners, and a series of interviews conducted with key individuals specifically for this project. According to the opinions analyzed in this paper, structural engineering education should be a 5-year program that ends with a master’s degree, so that students obtain enough necessary knowledge to begin their positions as structural engineers. Firms would rather continue the education of new-hires themselves after this time than to wait and pay more for students to finish longer graduate-type programs. Computer programs should be implemented further into education programs, and would be most productive not as a replacement to hand-calculation methods, but as a supplement. Students should be tasked with writing codes, so that they are required to implement these calculations into computer programs themselves, and use classical methods to verify their answers. In this way, engineering programs will be creating critical thinkers who can adapt to any new structural analysis and design programs, and not just be training students on current programs that will become obsolete with time. It is the responsibility of educators to educate current staff on how to implement these coding methods seamlessly into education as a supplement to hand calculation methods. Students will be able to learn what is behind commercial coding software, develop their hand-calculation skills through code verification, and focus more on the ever-important modeling and interpretation phases of problem solving. Practitioners will have the responsibility of not expecting students to graduate with knowledge of specific software programs, but instead recruiting students who showcase critical thinking skills and understand the backbone of these programs. They will continue the education of recent graduates themselves, providing them with real-world experience that they cannot receive in school while training them to use company-specific analysis and design software.
ContributorsMaurer, Cole Chaon (Author) / Hjelmstad, Keith (Thesis director) / Chatziefstratiou, Efthalia (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132511-Thumbnail Image.png
Description
Approximately 1% of the total working population within the United States bikes as their primary mode of commute. Due to recent increased in bicycle facilities as well as a focus on alternative modes of transport, understanding the motivations and type of people who bike to work is important in order

Approximately 1% of the total working population within the United States bikes as their primary mode of commute. Due to recent increased in bicycle facilities as well as a focus on alternative modes of transport, understanding the motivations and type of people who bike to work is important in order to encourage new users.
In this project, a literature review was completed as well as data analysis of the National Household Travel Survey (NHTS) in order to find specific populations to target. Using these target populations, it is suggested that advertising and workplace encouragement occur to persuade more people to bike to work. Through data analysis it was found that the most impactful variables were the region of the country, gender, population density, and commute distance. Bicycle commuters statistically had fewer vehicles in their households and drove less miles annually.
There were five main target groups found through this analysis; people who bike for other reasons besides work and live in a city with more than 4,000 people per square mile, young professionals between 19-39, women in regions with separated bicycle facilities, those with low vehicle availability, and environmentally conscious individuals. Working to target these groups through advertising campaigns to encourage new users, as well as increasing and improving bicycle facilities, will help create more new bicyclists.
ContributorsImbus, Eileen Elizabeth (Author) / Khoeini, Sara (Thesis director) / Pendyala, Ram (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05