Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 194
Filtering by

Clear all filters

132898-Thumbnail Image.png
Description
The intention of this report is to use computer simulations to investigate the viability of two materials, water and polyethylene, as shielding against space radiation. First, this thesis discusses some of the challenges facing future and current manned space missions as a result of galactic cosmic radiation, or GCR. The

The intention of this report is to use computer simulations to investigate the viability of two materials, water and polyethylene, as shielding against space radiation. First, this thesis discusses some of the challenges facing future and current manned space missions as a result of galactic cosmic radiation, or GCR. The project then uses MULASSIS, a Geant4 based radiation simulation tool, to analyze the effectiveness of water and polyethylene based radiation shields against proton radiation with an initial energy of 1 GeV. This specific spectrum of radiation is selected because it a component of GCR that has been shown by previous literature to pose a significant threat to humans on board spacecraft. The analysis of each material indicated that both would have to be several meters thick to adequately protect crew against the simulated radiation over a several year mission. Additionally, an analysis of the mass of a simple spacecraft model with different shield thicknesses showed that the mass would increase significantly with internal space. Thus, using either material as a shield would be expensive as a result of the cost of lifting a large amount of mass into orbit.
ContributorsBonfield, Maclain Peter (Author) / Holbert, Keith (Thesis director) / Young, Patrick (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132989-Thumbnail Image.png
Description
Information technology has become an increasing popular major offered by various universities, and provides the student with notable flexibility regarding courses as there are multiple career paths to suit the person’s specific technical interests. However, the methods universities use to promote their majors, including IT, are not as effective

Information technology has become an increasing popular major offered by various universities, and provides the student with notable flexibility regarding courses as there are multiple career paths to suit the person’s specific technical interests. However, the methods universities use to promote their majors, including IT, are not as effective as it needs to be. The mediums currently used are mostly comprised of brochures, flyers, a single web page from the university’s entire website, and some communication with advisors, among others. This can be an issue for many readers as the information is often brief, providing only summaries of what can be expected, and ambiguous statistics that may not accurately or completely reflect the prospects of graduates looking to make a living the rest of their adult lives. This could cause some students to choose a major that may not be their best fit, and changing majors later will be very costly and delay graduation by one or more years. Therefore, the advocation of majors will have be rethought. The IT major offered at ASU is a perfect opportunity to determine whether a major can be promoted through a different approach with a senior capstone project involving a website. This Barrett creative project will act as a subset of the capstone project that will explore an attempt at introducing in interactive element to the website that allows prospective students to get a brief introduction to the computer networking aspect of IT, which includes a real world introductory game, along with more detailed exercises if the user is interested.
ContributorsSchultz, Dillon Maxwell (Author) / Doheny, Damien (Thesis director) / Balyan, Renu (Committee member) / Information Technology (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
147899-Thumbnail Image.png
Description

The contemporary world is motivated by data-driven decision-making. Small 501(c)3 nonprofit organizations are often limited in their reach due to their size, lack of funding, and a lack of data analysis expertise. In an effort to increase accessibility to data analysis for such organizations, a Founders Lab team designed a

The contemporary world is motivated by data-driven decision-making. Small 501(c)3 nonprofit organizations are often limited in their reach due to their size, lack of funding, and a lack of data analysis expertise. In an effort to increase accessibility to data analysis for such organizations, a Founders Lab team designed a product to help them understand and utilize geographic information systems (GIS) software. This product – You Got GIS – strikes the balance between highly technical documentation and general overviews, benefiting 501(c)3 nonprofits in their pursuit of data-driven decision-making. Through the product’s use of case studies and methodologies, You Got GIS serves as a thought experiment platform to start answering questions regarding GIS. The product aims to continuously build partnerships in an effort to improve curriculum and user engagement.

ContributorsFletcher, Griffin (Co-author) / Heekin, Noah (Co-author) / Ferrara, John (Co-author) / Byrne, Jared (Thesis director) / Givens, Jessica (Committee member) / Satpathy, Asish (Committee member) / Historical, Philosophical & Religious Studies (Contributor) / Department of Supply Chain Management (Contributor) / Department of Economics (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

To understand the role communication and effective management play in the project management field, virtual work was analyzed in two phases. Phase one consisted of gaining familiarity within the field of project management by interviewing three project managers who discussed their field of work, how it has changed due to

To understand the role communication and effective management play in the project management field, virtual work was analyzed in two phases. Phase one consisted of gaining familiarity within the field of project management by interviewing three project managers who discussed their field of work, how it has changed due to Covid-19, approaches to communication and virtual team management, and strategies that allow for effective project management. Phase two comprised a simulation in which 8 ASU student volunteers were put into scenarios that required completing and executing a given project. Students gained project experience through the simulation and had an opportunity to reflect on their project experience.

ContributorsSandhu, Shiwani K (Author) / Kassing, Jeff (Thesis director) / Pandya, Bankim (Committee member) / College of Integrative Sciences and Arts (Contributor) / School of Social and Behavioral Sciences (Contributor) / Thunderbird School of Global Management (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148419-Thumbnail Image.png
Description

Currently, autonomous vehicles are being evaluated by how well they interact with humans without evaluating how well humans interact with them. Since people are not going to unanimously switch over to using autonomous vehicles, attention must be given to how well these new vehicles signal intent to human drivers from

Currently, autonomous vehicles are being evaluated by how well they interact with humans without evaluating how well humans interact with them. Since people are not going to unanimously switch over to using autonomous vehicles, attention must be given to how well these new vehicles signal intent to human drivers from the driver’s point of view. Ineffective communication will lead to unnecessary discomfort among drivers caused by an underlying uncertainty about what an autonomous vehicle is or isn’t about to do. Recent studies suggest that humans tend to fixate on areas of higher uncertainty so scenarios that have a higher number of vehicle fixations can be reasoned to be more uncertain. We provide a framework for measuring human uncertainty and use the framework to measure the effect of empathetic vs non-empathetic agents. We used a simulated driving environment to create recorded scenarios and manipulate the autonomous vehicle to include either an empathetic or non-empathetic agent. The driving interaction is composed of two vehicles approaching an uncontrolled intersection. These scenarios were played to twelve participants while their gaze was recorded to track what the participants were fixating on. The overall intent was to provide an analytical framework as a tool for evaluating autonomous driving features; and in this case, we choose to evaluate how effective it was for vehicles to have empathetic behaviors included in the autonomous vehicle decision making. A t-test analysis of the gaze indicated that empathy did not in fact reduce uncertainty although additional testing of this hypothesis will be needed due to the small sample size.

ContributorsGreenhagen, Tanner Patrick (Author) / Yang, Yezhou (Thesis director) / Jammula, Varun C (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148437-Thumbnail Image.png
Description

A novel CFD algorithm called LEAP is currently being developed by the Kasbaoui Research Group (KRG) using the Immersed Boundary Method (IBM) to describe complex geometries. To validate the algorithm, this research project focused on testing the algorithm in three dimensions by simulating a sphere placed in a moving fluid.

A novel CFD algorithm called LEAP is currently being developed by the Kasbaoui Research Group (KRG) using the Immersed Boundary Method (IBM) to describe complex geometries. To validate the algorithm, this research project focused on testing the algorithm in three dimensions by simulating a sphere placed in a moving fluid. The simulation results were compared against the experimentally derived Schiller-Naumann Correlation. Over the course of 36 trials, various spatial and temporal resolutions were tested at specific Reynolds numbers between 10 and 300. It was observed that numerical errors decreased with increasing spatial and temporal resolution. This result was expected as increased resolution should give results closer to experimental values. Having shown the accuracy and robustness of this method, KRG will continue to develop this algorithm to explore more complex geometries such as aircraft engines or human lungs.

ContributorsMadden, David Jackson (Author) / Kasbaoui, Mohamed Houssem (Thesis director) / Herrmann, Marcus (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Consider Steven Cryos’ words, “When disaster strikes, the time to prepare has passed.” Witnessing domestic water insecurity in events such as Hurricane Katrina, the instability in Flint, Michigan, and most recently the winter storms affecting millions across Texas, we decided to take action. The period between a water supply’s disruption

Consider Steven Cryos’ words, “When disaster strikes, the time to prepare has passed.” Witnessing domestic water insecurity in events such as Hurricane Katrina, the instability in Flint, Michigan, and most recently the winter storms affecting millions across Texas, we decided to take action. The period between a water supply’s disruption and restoration is filled with anxiety, uncertainty, and distress -- particularly since there is no clear indication of when, exactly, restoration comes. It is for this reason that Water Works now exists. As a team of students from diverse backgrounds, what started as an honors project with the Founders Lab at Arizona State University became the seed that will continue to mature into an economically sustainable business model supporting the optimistic visions and tenants of humanitarianism. By having conversations with community members, conducting market research, competing for funding and fostering progress amid the COVID-19 pandemic, our team’s problem-solving traverses the disciplines. The purpose of this paper is to educate our readers about a unique solution to emerging issues of water insecurity that are nested across and within systems who could benefit from the introduction of a personal water reclamation system, showcase our team’s entrepreneurial journey, and propose future directions that will this once pedagogical exercise to continue fulfilling its mission: To heal, to hydrate and to help bring safe water to everyone.

ContributorsReitzel, Gage Alexander (Co-author) / Filipek, Marina (Co-author) / Sadiasa, Aira (Co-author) / Byrne, Jared (Thesis director) / Sebold, Brent (Committee member) / Historical, Philosophical & Religious Studies (Contributor) / School of Human Evolution & Social Change (Contributor, Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The market for searching for food online is exploding. According to one expert at Google, “there are over 1 billion restaurant searches on Google every month” (Kelso, 2020). To capture this market and ride the general digital trend of internet personalization (as evidenced by Google search results, ads, YouTube and

The market for searching for food online is exploding. According to one expert at Google, “there are over 1 billion restaurant searches on Google every month” (Kelso, 2020). To capture this market and ride the general digital trend of internet personalization (as evidenced by Google search results, ads, YouTube and social media algorithms, etc), we created Munch to be an algorithm meant to help people find food they’ll love. <br/><br/>Munch offers the ability to search for food by restaurant or even as specific as a menu item (ex: search for the best Pad Thai). The best part? It is customized to your preferences based on a quiz you take when you open the app and from that point continuously learns from your behavior.<br/><br/>This thesis documents the journey of the team who founded Munch, what progress we made and the reasoning behind our decisions, where this idea fits in a competitive marketplace, how much it could be worth, branding, and our recommendations for a successful app in the future.

ContributorsInocencio, Phillippe Adriane (Co-author) / Rajan, Megha (Co-author) / Krug, Hayden (Co-author) / Byrne, Jared (Thesis director) / Sebold, Brent (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148133-Thumbnail Image.png
Description

Waste pickers are the victims of harsh economic and social factors that have hurt many<br/>developing countries and billions of people around the world. Due to the rise of industrialization<br/>since the 19th century, waste and disposable resources have been discarded around the world to<br/>provide more resources, products, and services to wealthy

Waste pickers are the victims of harsh economic and social factors that have hurt many<br/>developing countries and billions of people around the world. Due to the rise of industrialization<br/>since the 19th century, waste and disposable resources have been discarded around the world to<br/>provide more resources, products, and services to wealthy countries. This has put developing<br/>countries in a precarious position where people have had very few economic opportunities<br/>besides taking on the role of waste pickers, who not only face physical health consequences due<br/>to the work they do but also face exclusion from society due to the negative views of waste<br/>pickers. Many people view waste pickers as scavengers and people who survive off of doing<br/>dirty work, which creates tensions between waste pickers and others in society. This even leads<br/>to many countries outlawing waste picking and has led to the brutal treatment of waste pickers<br/>throughout the world and has even led to thousands of waste pickers being killed by anti-waste<br/>picker groups and law enforcement organizations in many countries.<br/>Waste pickers are often at the bottom of supply chains as they take resources that have<br/>been used and discarded, and provide them to recyclers, waste management organizations, and<br/>others who are able to turn these resources into usable materials again. Waste pickers do not have<br/>many opportunities to rise above the situation they are in as waste picking has become the only<br/>option for many people who need to provide for themselves and their families. They are not<br/>compensated very well for the work they do, which also contributes to the situation where waste<br/>pickers are forced into a position of severe health risks, backlash from society and governments,<br/>not being able to seek better opportunities due to a lack of earning potential, and not being<br/>connected with end-users. Now is the time to create new business models that solve these large<br/>problems in our global society and create a sustainable way to ensure that waste pickers are<br/>treated properly around the world.

ContributorsKapps, Jack Michael (Co-author) / Kidd, Isabella (Co-author) / Urbina-Bernal, Alejandro (Co-author) / Bryne, Jared (Thesis director) / Marseille, Alicia (Committee member) / Jordan, Amanda (Committee member) / Department of Management and Entrepreneurship (Contributor) / Department of Marketing (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Human beings have long sought to conquer the unconquerable and to push the boundaries of human endurance. There are few such endeavors more challenging than venturing into the coldest and harshest environments on the planet. The challenges these adventurers face are nearly countless, but one that is often underestimated is

Human beings have long sought to conquer the unconquerable and to push the boundaries of human endurance. There are few such endeavors more challenging than venturing into the coldest and harshest environments on the planet. The challenges these adventurers face are nearly countless, but one that is often underestimated is the massive risk of dehydration in high mountains and the lack of sufficient technology to meet this important need. Astronauts and mountaineers of NASA's Johnson Space Center have created a technology that solves this problem: a freeze-resistant hydration system that helps stop water from freezing at sub-zero temperatures by using cutting-edge technology and materials science to insulate and heat enough water to prevent dehydration over the course of the day, so that adventurers no longer need to worry about their equipment stopping them. This patented technology is the basis of the founding of Aeropak, an advanced outdoor hydration brand developed by three ASU students (Kendall Robinson, Derek Stein, and Thomas Goers) in collaboration with W.P. Carey’s Founder’s Lab. The primary goal was to develop traction among winter sport enthusiasts to create a robust customer base and evaluate the potential for partnership with hydration solution companies as well as direct sales through online and brick-and-mortar retail avenues. To this end, the Aeropak team performed market research to determine the usefulness and need for the product through a survey sent out to a number of outdoor sporting clubs on Arizona State University’s campus. After determining an interest in a potential product, the team developed a marketing strategy and business model which was executed through Instagram as well as a standalone website, with the goal of garnering interest and traction for a future product. Future goals of the project will be to bring a product to market and expand Aeropak’s reach into a variety of winter sport subcommunities, as well as evaluate the potential for further expansion into large-scale retailers and collaboration with established companies.

ContributorsStein, Derek W (Co-author) / Robinson, Kendall (Co-author) / Goers, Thomas (Co-author) / Byrne, Jared (Thesis director) / Sebold, Brent (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05