Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 31
Filtering by

Clear all filters

162272-Thumbnail Image.png
Description

The pandemic that hit in 2020 has boosted the growth of online learning that involves the booming of Massive Open Online Course (MOOC). To support this situation, it will be helpful to have tools that can help students in choosing between the different courses and can help instructors to understand

The pandemic that hit in 2020 has boosted the growth of online learning that involves the booming of Massive Open Online Course (MOOC). To support this situation, it will be helpful to have tools that can help students in choosing between the different courses and can help instructors to understand what the students need. One of those tools is an online course ratings predictor. Using the predictor, online course instructors can learn the qualities that majority course takers deem as important, and thus they can adjust their lesson plans to fit those qualities. Meanwhile, students will be able to use it to help them in choosing the course to take by comparing the ratings. This research aims to find the best way to predict the rating of online courses using machine learning (ML). To create the ML model, different combinations of the length of the course, the number of materials it contains, the price of the course, the number of students taking the course, the course’s difficulty level, the usage of jargons or technical terms in the course description, the course’s instructors’ rating, the number of reviews the instructors got, and the number of classes the instructors have created on the same platform are used as the inputs. Meanwhile, the output of the model would be the average rating of a course. Data from 350 courses are used for this model, where 280 of them are used for training, 35 for testing, and the last 35 for validation. After trying out different machine learning models, wide neural networks model constantly gives the best training results while the medium tree model gives the best testing results. However, further research needs to be conducted as none of the results are not accurate, with 0.51 R-squared test result for the tree model.

ContributorsWidodo, Herlina (Author) / VanLehn, Kurt (Thesis director) / Craig, Scotty (Committee member) / Barrett, The Honors College (Contributor) / Department of Management and Entrepreneurship (Contributor) / Computer Science and Engineering Program (Contributor)
Created2021-12
166227-Thumbnail Image.png
Description
Artistic expression can be made more accessible through the use of technological interfaces such as auditory analysis, generative artificial intelligence models, and simplification of complicated systems, providing a way for human driven creativity to serve as an input that allow users to creatively express themselves. Studies and testing were done

Artistic expression can be made more accessible through the use of technological interfaces such as auditory analysis, generative artificial intelligence models, and simplification of complicated systems, providing a way for human driven creativity to serve as an input that allow users to creatively express themselves. Studies and testing were done with industry standard performance technology and protocols to create an accessible interface for creative expression. Artificial intelligence models were created to generate art based on simple text inputs. Users were then invited to display their creativity using the software, and a comprehensive performance showcased the potential of the system for artistic expression.
ContributorsPardhe, Joshua (Author) / Lim, Kang Yi (Co-author) / Meuth, Ryan (Thesis director) / Brian, Jennifer (Committee member) / Hermann, Kristen (Committee member) / Barrett, The Honors College (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Watts College of Public Service & Community Solut (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
166228-Thumbnail Image.png
Description
Artistic expression can be made more accessible through the use of technological interfaces such as auditory analysis, generative artificial intelligence models, and simplification of complicated systems, providing a way for human driven creativity to serve as an input that allow users to creatively express themselves. Studies and testing were done

Artistic expression can be made more accessible through the use of technological interfaces such as auditory analysis, generative artificial intelligence models, and simplification of complicated systems, providing a way for human driven creativity to serve as an input that allow users to creatively express themselves. Studies and testing were done with industry standard performance technology and protocols to create an accessible interface for creative expression. Artificial intelligence models were created to generate art based on simple text inputs. Users were then invited to display their creativity using the software, and a comprehensive performance showcased the potential of the system for artistic expression.
ContributorsLim, Kang Yi (Author) / Pardhe, Joshua (Co-author) / Meuth, Ryan (Thesis director) / Brian, Jennifer (Committee member) / Hermann, Kristen (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
166246-Thumbnail Image.png
Description
In the age of information, collecting and processing large amounts of data is an integral part of running a business. From training artificial intelligence to driving decision making, the applications of data are far-reaching. However, it is difficult to process many types of data; namely, unstructured data. Unstructured data is

In the age of information, collecting and processing large amounts of data is an integral part of running a business. From training artificial intelligence to driving decision making, the applications of data are far-reaching. However, it is difficult to process many types of data; namely, unstructured data. Unstructured data is “information that either does not have a predefined data model or is not organized in a pre-defined manner” (Balducci & Marinova 2018). Such data are difficult to put into spreadsheets and relational databases due to their lack of numeric values and often come in the form of text fields written by the consumers (Wolff, R. 2020). The goal of this project is to help in the development of a machine learning model to aid CommonSpirit Health and ServiceNow, hence why this approach using unstructured data was selected. This paper provides a general overview of the process of unstructured data management and explores some existing implementations and their efficacy. It will then discuss our approach to converting unstructured cases into usable data that were used to develop an artificial intelligence model which is estimated to be worth $400,000 and save CommonSpirit Health $1,200,000 in organizational impact.
ContributorsBergsagel, Matteo (Author) / De Waard, Jan (Co-author) / Chavez-Echeagaray, Maria Elena (Thesis director) / Burns, Christopher (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
166200-Thumbnail Image.png
Description
Simulations can be used to help formulate and solve complex problems. Toward this goal, the Arizona Center for Integrative Modeling and Simulation (ACIMS) is a research laboratory at Arizona State University that creates powerful tools for simulating complex systems. Their flagship simulator, DEVS-Suite, allows users to create models that can

Simulations can be used to help formulate and solve complex problems. Toward this goal, the Arizona Center for Integrative Modeling and Simulation (ACIMS) is a research laboratory at Arizona State University that creates powerful tools for simulating complex systems. Their flagship simulator, DEVS-Suite, allows users to create models that can be simulated. The latest version of this simulator supports storing data in Postgres, a relational database that is well suited for storing millions of data points. However, though DEVS-Suite supports real-time visualizations, the simulator does not support the manipulation and visualization of the data stored in the database. As simulations become more complex, users benefit from visualizing time-based trajectories. User-defined data visualization can help gain new insight into generated simulated data.
ContributorsSchaffer, Albert (Author) / Sarjoughian, Hessam (Thesis director) / Chen, Yinong (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
Description

In this paper, we discuss the methods and requirements to simulate a soft bodied beam using traditional rigid body kinematics to produce motion inspired by eels. Eels produce a form of undulatory locomotion called anguilliform locomotion that propagates waves throughout the entire body. The system that we are analyzing is

In this paper, we discuss the methods and requirements to simulate a soft bodied beam using traditional rigid body kinematics to produce motion inspired by eels. Eels produce a form of undulatory locomotion called anguilliform locomotion that propagates waves throughout the entire body. The system that we are analyzing is a flexible 3D printed beam being actively driven by a servo motor. Using the simulation, we also analyze different parameters for these spines to maximize the linear speed of the system.

ContributorsKwan, Anson (Author) / Aukes, Daniel (Thesis director) / Marvi, Hamidreza (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2022-05
164468-Thumbnail Image.png
ContributorsKwan, Anson (Author) / Aukes, Daniel (Thesis director) / Marvi, Hamidreza (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2022-05
164469-Thumbnail Image.jpg
ContributorsKwan, Anson (Author) / Aukes, Daniel (Thesis director) / Marvi, Hamidreza (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2022-05
164470-Thumbnail Image.jpg
ContributorsKwan, Anson (Author) / Aukes, Daniel (Thesis director) / Marvi, Hamidreza (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2022-05
164471-Thumbnail Image.jpg
ContributorsKwan, Anson (Author) / Aukes, Daniel (Thesis director) / Marvi, Hamidreza (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2022-05