Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

137210-Thumbnail Image.png
Description
The exhaust system is an integral part of any internal combustion engine. A well- designed exhaust system efficiently removes exhaust gasses expelled from the cylinders. If tuned for performance purposes, the exhaust system can also exhibit scavenging and supercharging characteristics. This project reviews the major components of an exhaust system

The exhaust system is an integral part of any internal combustion engine. A well- designed exhaust system efficiently removes exhaust gasses expelled from the cylinders. If tuned for performance purposes, the exhaust system can also exhibit scavenging and supercharging characteristics. This project reviews the major components of an exhaust system and discusses the proper design techniques necessary to utilize the performance boosting potential of a tuned exhaust system for a four-stroke engine. These design considerations are then applied to Arizona State University's Formula SAE vehicle by comparing the existing system to a properly tuned system. An inexpensive testing method, developed specifically for this project, is used to test the effectiveness of the current design. The results of the test determined that the current design is ineffective at scavenging neighboring pipes of exhaust gasses and should be redesigned for better performance.
ContributorsKnutsen, Jeffrey Scott (Author) / Huang, Huei-Ping (Thesis director) / Steele, Bruce (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
137229-Thumbnail Image.png
Description
The paper presents a new exhaust header design to replace the current design on Arizona State University's Formula SAE car. Also, the thought process of the design was presented as well as a method of analysis for tuning the exhaust headers. The equation presented was then compared with a computational

The paper presents a new exhaust header design to replace the current design on Arizona State University's Formula SAE car. Also, the thought process of the design was presented as well as a method of analysis for tuning the exhaust headers. The equation presented was then compared with a computational fluid dynamics model using ANSYS Fluent. It was found that the equation did not match the timing of the CFD model. However, the design does allow for simple changes to be made in order to reduce the length of the exhaust and allow for the correct tuning. Also, the design minimizes interference between the individual headers which is ideal to increase engine performance. The exhaust meets the Formula SAE regulations, and is designed to fit in the new chassis for the FSAE car that ASU will run in 2015. Recommendations were also made to further improve the design and analysis model.
ContributorsKaashoek, Kevin Jason (Author) / Huang, Huei-Ping (Thesis director) / Trimble, Steven (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05