Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 103
Filtering by

Clear all filters

134177-Thumbnail Image.png
Description
Buck converters are a class of switched-mode power converters often used to step down DC input voltages to a lower DC output voltage. These converters naturally produce a current and voltage ripple at their output due to their switching action. Traditional methods of reducing this ripple have involved adding large

Buck converters are a class of switched-mode power converters often used to step down DC input voltages to a lower DC output voltage. These converters naturally produce a current and voltage ripple at their output due to their switching action. Traditional methods of reducing this ripple have involved adding large discrete inductors and capacitors to filter the ripple, but large discrete components cannot be integrated onto chips. As an alternative to using passive filtering components, this project investigates the use of active ripple cancellation to reduce the peak output ripple. Hysteretic controlled buck converters were chosen for their simplicity of design and fast transient response. The proposed cancellation circuits sense the output ripple of the buck converter and inject an equal ripple exactly out of phase with the sensed ripple. Both current-mode and voltage-mode feedback loops are simulated, and the effectiveness of each cancellation circuit is examined. Results show that integrated active ripple cancellation circuits offer a promising substitute for large discrete filters.
ContributorsWang, Ziyan (Author) / Bakkaloglu, Bertan (Thesis director) / Kitchen, Jennifer (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
136728-Thumbnail Image.png
Description
This project was centered around designing a processor model (using the C programming language) based on the Coldfire computer architecture that will run on third party software known as Open Virtual Platforms. The end goal is to have a fully functional processor that can run Coldfire instructions and utilize peripheral

This project was centered around designing a processor model (using the C programming language) based on the Coldfire computer architecture that will run on third party software known as Open Virtual Platforms. The end goal is to have a fully functional processor that can run Coldfire instructions and utilize peripheral devices in the same way as the hardware used in the embedded systems lab at ASU. This project would cut down the substantial amount of time students spend commuting to the lab. Having the processor directly at their disposal would also encourage them to spend more time outside of class learning the hardware and familiarizing themselves with development on an embedded micro-controller. The model will be accurate, fast and reliable. These aspects will be achieved through rigorous unit testing and use of the OVP platform which provides instruction accurate simulations at hundreds of MIPS (million instructions per second) for the specified model. The end product was able to accurately simulate a subset of the Coldfire instructions at very high rates.
ContributorsDunning, David Connor (Author) / Burger, Kevin (Thesis director) / Meuth, Ryan (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-12
136749-Thumbnail Image.png
Description
The thesis document describes in detail the decision making process and research that went into each step in the process of designing, coding, launching, and marketing a mobile game. This includes major challenges and methodologies for overcoming them or changing course as well as significant revisions that were made to

The thesis document describes in detail the decision making process and research that went into each step in the process of designing, coding, launching, and marketing a mobile game. This includes major challenges and methodologies for overcoming them or changing course as well as significant revisions that were made to the game upon receiving market and user feedback. The game, Sheep In Space, was launched on to the Windows Phone 8 marketplace initially via the use of the GameMaker: Studio game engine. From there, following a series of revisions Sheep In Space launched on the Android marketplace and has been undergoing further changes before the final launch to iOS. The revision and launch strategy was determined based off of market feedback from a variety of facets, including direct word of mouth, reviews, downloads, analytics data, and social media reaction.
Created2014-12
136314-Thumbnail Image.png
Description
The world of a hearing impaired person is much different than that of somebody capable of discerning different frequencies and magnitudes of sound waves via their ears. This is especially true when hearing impaired people play video games. In most video games, surround sound is fed through some sort of

The world of a hearing impaired person is much different than that of somebody capable of discerning different frequencies and magnitudes of sound waves via their ears. This is especially true when hearing impaired people play video games. In most video games, surround sound is fed through some sort of digital output to headphones or speakers. Based on this information, the gamer can discern where a particular stimulus is coming from and whether or not that is a threat to their wellbeing within the virtual world. People with reliable hearing have a distinct advantage over hearing impaired people in the fact that they can gather information not just from what is in front of them, but from every angle relative to the way they're facing. The purpose of this project was to find a way to even the playing field, so that a person hard of hearing could also receive the sensory feedback that any other person would get while playing video games To do this, visual surround sound was created. This is a system that takes a surround sound input, and illuminates LEDs around the periphery of glasses based on the direction, frequency and amplitude of the audio wave. This provides the user with crucial information on the whereabouts of different elements within the game. In this paper, the research and development of Visual Surround Sound is discussed along with its viability in regards to a deaf person's ability to learn the technology, and decipher the visual cues.
ContributorsKadi, Danyal (Co-author) / Burrell, Nathaneal (Co-author) / Butler, Kristi (Co-author) / Wright, Gavin (Co-author) / Kosut, Oliver (Thesis director) / Bliss, Daniel (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2015-05
133797-Thumbnail Image.png
Description
Parents in STEM careers are more apt to guide their kids towards STEM careers (Sherburne-Michigan, 2017). There are STEM programs and classes for students who are interested in related fields, but the conundrum is that students need to be interested in order to choose to participate. The goal of this

Parents in STEM careers are more apt to guide their kids towards STEM careers (Sherburne-Michigan, 2017). There are STEM programs and classes for students who are interested in related fields, but the conundrum is that students need to be interested in order to choose to participate. The goal of this creative project was to introduce engineering concepts in a high school class to reveal and investigate the ways in which engineering concepts can be successfully introduced to a larger student populace to increase interest in engineering programs, courses, and degrees. A lesson plan and corresponding materials - including circuit kits and a simulated ball launching station with graphical display - were made to accomplish this goal. Throughout the lesson students were asked to (1) use given materials to accomplish a goal, (2) predict outcomes based on conceptual understanding and mathematical calculations, (3) test predictions, (4) record data, and (5) analyze data to generate results. The students first created a simple circuit to understand the circuit components and learn general electrical engineering concepts. A simple light dimmer circuit let students demonstrate understanding of electrical concepts (e.g., voltage, current resistance) before using the circuit to a simulated motor in order to launch a ball. The students were then asked to predict the time and height of a ball launched with various settings of their control circuit. The students were able to test their theories with the simulated launcher test set up shown in Figure 25 and collect data to create a parabolic height versus time graph. Based on the measured graph, the students were able to record their results and compare calculated values to real-world measured values. The results of the study suggest ways to introduce students to engineering while developing hands-on concept modeling of projectile motion and circuit design in math classrooms. Additionally, this lesson identifies a rich topic for teachers and STEM education researchers to explore lesson plans with interdisciplinary connections to engineering. This report will include the inspiration for the product, related work, iterative design process, and the final design. This information will be followed by user feedback, a project reflection, and lessons learned. The report will conclude with a summary and a discussion of future work.
ContributorsBurgess, Kylee Rae (Author) / Jordan, Shawn (Thesis director) / Sohoni, Sohum (Committee member) / Kinach, Barbara (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133808-Thumbnail Image.png
Description
The "Dutch Dukeout" is a memorial, community engagement venture founded by Scott Fitzgerald and Sam Minton. The event was also supported and facilitated through the help of a third party member, Dylan Bryant. The "Dutch Dukeout" will continue annually, as an opportunity for Brophy College Preparatory alumni and current students

The "Dutch Dukeout" is a memorial, community engagement venture founded by Scott Fitzgerald and Sam Minton. The event was also supported and facilitated through the help of a third party member, Dylan Bryant. The "Dutch Dukeout" will continue annually, as an opportunity for Brophy College Preparatory alumni and current students to come together and connect. This venture also exists to celebrate and honor the life and legacy of Fr. Harry "Dutch" Olivier, a former, prominent faculty member of Brophy. Additionally, the "Dutch Dukeout" aims to raise money to support the Brophy Scholarship Foundation, a resource for current Brophy students to offset the financial burden it costs to attend the prominent college preparatory. Foremost, the "Dutch Dukeout" flag football tournament provides a powerful way for Brophy Alumni to reconnect with their school. By communicating and participating with graduates from various classes, alumni have an opportunity to provide valuable life lessons and share personal stories with the youth, as well as bond over their shared experience at Brophy. For a school that is able to continually develop community leaders and social activists, the "Dutch Dukeout" provides a platform for collaboration and inspiration for everyone who participates. By raising money to support the Brophy Scholarship Foundation and providing an opportunity for alumni to engage in their community, the "Dutch Dukeout" is an event that truly embodies Fr. Olivier's values and beliefs. This thesis report documents the ideas, work and efforts that were completed to launch and then ensure the success and longevity of the venture. It also serves as an example for future social entrepreneurs who aim to make a difference in communities of their own.
ContributorsFitzgerald, Scott (Co-author) / Samuel, Minton (Co-author) / Mokwa, Michael (Thesis director) / Eaton, John (Committee member) / Department of Information Systems (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133701-Thumbnail Image.png
Description
This thesis consisted in taking the preliminary steps in starting a business. Teamed up with a seasoned entrepreneur, we created a thorough Business Plan, Pro Forma and Investor presentation documents, all of which have been and still are being used in the process of creating the business. The business is

This thesis consisted in taking the preliminary steps in starting a business. Teamed up with a seasoned entrepreneur, we created a thorough Business Plan, Pro Forma and Investor presentation documents, all of which have been and still are being used in the process of creating the business. The business is in the competitive eSports industry, and involved camps and leagues targeted to youth ages 8-15. We have launched the first camp, and are in talks with investors and key strategic partners.
ContributorsHeiler, George (Co-author) / Gaynor, Tristan (Co-author) / Murphy, Kevin (Co-author) / Neck, Christopher (Thesis director) / McLurg, Dave (Committee member) / Department of Information Systems (Contributor) / Department of Supply Chain Management (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133639-Thumbnail Image.png
Description
Current technology does not allow for the full amount of power produced by solar arrays (PV) on spacecraft to be utilized. The arrays are designed with non-reconfigurable architectures and sent on fifteen to twenty year long missions. They cannot be changed once they are in space, so the arrays are

Current technology does not allow for the full amount of power produced by solar arrays (PV) on spacecraft to be utilized. The arrays are designed with non-reconfigurable architectures and sent on fifteen to twenty year long missions. They cannot be changed once they are in space, so the arrays are designed for the end of life. Throughout their lifetime, solar arrays can degrade in power producing capabilities anywhere from 20% to 50%. Because there is such a drastic difference in the beginning and end of life power production, and because they cannot be reconfigured, a new design has been found necessary in order to increase power production. Reconfiguration allows the solar arrays to achieve maximum power producing capabilities at both the beginning and end of their lives. With the potential to increase power production by 50%, the reconfiguration design consists of a switching network to be able to utilize any combination of cells. The design for reconfiguration must meet the power requirements of the solar array. This thesis will explore different designs for reconfiguration, as well as possible switches for implementation. It will also review other methods to increase power production, as well as discuss future work in this field.
ContributorsJohnson, Everett Hope (Author) / Kitchen, Jennifer (Thesis director) / Ozev, Sule (Committee member) / School of International Letters and Cultures (Contributor) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137330-Thumbnail Image.png
Description
Introspective awareness refers to direct access to one’s own internal and subjective thoughts and feelings (Wimmer & Hartl, 1991). Two theories, simulation theory and theory-theory, have been used to understand our access to our mental states. Simulation theory (Harris, 1991) involves imagining yourself in another person’s situation, reading off of

Introspective awareness refers to direct access to one’s own internal and subjective thoughts and feelings (Wimmer & Hartl, 1991). Two theories, simulation theory and theory-theory, have been used to understand our access to our mental states. Simulation theory (Harris, 1991) involves imagining yourself in another person’s situation, reading off of your mental state, and attributing that state to the other person. Theory-theory (Gopnik, 1993) involves an interrelated body of knowledge, based on core mental-state constructs, including beliefs and desires, that may be applied to everyone—self and others (Gopnik & Wellman, 1994). Introspection is taken for granted by simulation theory, and explicitly denied by theory-theory. This study is designed to test for evidence of introspection in young children using simple perception and knowledge task. The current evidence is against introspective awareness in children because the data suggest that children cannot report their own false beliefs and they cannot report their on-going thoughts (Flavell, Green & Flavell, 1993; Gopnik & Astington, 1988). The hypothesis in this study states that children will perform better on Self tasks compared to Other tasks, which will be evidence for introspection. The Other-Perception tasks require children to calculate the other’s line of sight and determine if there is something obscuring his or her vision. The Other-Knowledge tasks require children to reason that the other’s previous looking inside a box means that he or she will know what is inside the box when it is closed. The corresponding Self tasks could be answered either by using the same reasoning for the self or by introspection to determine what it is they see and do not see, and know and do not know. Children performing better on Self tasks compared to Other tasks will be an indication of introspection. Tests included Yes/No and Forced Choice questions, which was initially to ensure that the results will not be caused by a feature of a single method of questioning. I realized belatedly, however, that Forced Choice was not a valid measure of introspection as children could introspect in both the Self and Other conditions. I also expect to replicate previous findings that reasoning about Perception is easier for children than reasoning about Knowledge.
ContributorsAamed, Mati (Author) / Fabricius, William (Thesis director) / Glenberg, Arthur (Committee member) / Kupfer, Anne (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor)
Created2013-12
137247-Thumbnail Image.png
Description
A novel strain sensing procedure using an optical scanning methodology and diffraction grating is explored. The motivation behind this study is due to uneven thermal strain distribution across semiconductor chips that are composed of varying materials. Due to the unique properties of the materials and the different coefficients of thermal

A novel strain sensing procedure using an optical scanning methodology and diffraction grating is explored. The motivation behind this study is due to uneven thermal strain distribution across semiconductor chips that are composed of varying materials. Due to the unique properties of the materials and the different coefficients of thermal expansion (CTE), one can expect the material that experiences the highest strain to be the most likely failure point of the chip. As such, there is a need for a strain sensing technique that offers a very high strain sensitivity, a high spatial resolution while simultaneously achieving a large field of view. This study goes through the optical setup as well as the evolution of the optical grating in an effort to improve the strain sensitivity of this setup.
ContributorsChen, George (Co-author) / Ma, Teng (Co-author) / Liang, Hanshuang (Co-author) / Song, Zeming (Co-author) / Nguyen, Hoa (Co-author) / Yu, Hongbin (Thesis director) / Jiang, Hanqing (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2014-05