Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

135698-Thumbnail Image.png
Description
Traumatic brain injury (TBI) is a leading cause of injury related death in the United States. The complexity of the injury environment that follows TBI creates an incomplete understanding of all the mechanisms in place to regulate chemotactic responses to TBI. The goal of this project was to develop a

Traumatic brain injury (TBI) is a leading cause of injury related death in the United States. The complexity of the injury environment that follows TBI creates an incomplete understanding of all the mechanisms in place to regulate chemotactic responses to TBI. The goal of this project was to develop a predictive in silco model using diffusion and autocrine/paracrine signaling specific to stromal cell derived factor-1α (SDF-1α) gradient formation after TBI and compare this model with in vivo experimental data. A COMSOL model using Fickian diffusion and autocrine/paracrine reaction terms was generated to predict the gradient formation observed in vivo at three physiologically relevant time points (1, 3, and 7 days). In vivo data was gathered and analyzed via immunohistochemistry and MATLAB. The spatial distribution of SDF-1α concentration in vivo more consistently demonstrated patterns similar to the in silico model dependent on both diffusion and autocrine/paracrine reaction terms rather than diffusion alone. The temporal distribution of these same results demonstrated degradation of SDF-1α at too rapid a rate, compared to the in vivo results. To account for differences in behavior observed in vivo, reaction terms and constants of 1st-order reaction rates must be modulated to better reflect the results observed in vivo. These results from both the in silico model and in vivo data support the hypothesis that SDF-1α gradient formation after TBI depends on more than diffusion alone. Future work will focus on improving the model with constants that are specific to SDF-1α as well as testing methods to better control the degradation of SDF-1α.
ContributorsFreeman, Sabrina Louise (Author) / Stabenfeldt, Sarah (Thesis director) / Caplan, Michael (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
163309-Thumbnail Image.png
Description
Food waste is a significant problem in many developed nations, especially the United States. Each year millions of pounds of uneaten or partially eaten food scraps are thrown into landfill, where it degrades anaerobically, producing methane gas emissions, contributing to foul odors, and contributing to an unsustainable food system. This

Food waste is a significant problem in many developed nations, especially the United States. Each year millions of pounds of uneaten or partially eaten food scraps are thrown into landfill, where it degrades anaerobically, producing methane gas emissions, contributing to foul odors, and contributing to an unsustainable food system. This thesis project set out to conduct a small-scale composting system that diverted would-be food waste from a local food bank to a community garden, where food scraps would decompose into compost to then be turned into a valuable, nutrient-rich amendment in that local garden. Engaging with this food bank and community garden allowed us to leverage the existing relationship between the two, and experiment and develop a framework that would demonstrate the feasibility of a long-term composting system in this community. By conducting this project throughout 2021, we saw where strategies worked well, what challenges remained, and where future opportunities could be expanded on. In the end, we diverted over 2000 lbs of uneaten food away from the food bank and into our composting system. We concluded our project report by providing a set of actionable recommendations and future framework guidelines that could be used by the local community garden in the future or be referenced to by other interested parties.
ContributorsBardon, Lee (Author) / Marshall, Meghan (Co-author) / Nelson, Melissa (Thesis director) / Winburn, Morgan (Committee member) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2021-12
163310-Thumbnail Image.png
Description
Food waste is a significant problem in many developed nations, especially the United States. Each year millions of pounds of uneaten or partially eaten food scraps are thrown into landfill, where it degrades anaerobically, producing methane gas emissions, contributing to foul odors, and contributing to an unsustainable food system. This

Food waste is a significant problem in many developed nations, especially the United States. Each year millions of pounds of uneaten or partially eaten food scraps are thrown into landfill, where it degrades anaerobically, producing methane gas emissions, contributing to foul odors, and contributing to an unsustainable food system. This thesis project set out to conduct a small-scale composting system that diverted would-be food waste from a local food bank to a community garden, where food scraps would decompose into compost to then be turned into a valuable, nutrient-rich amendment in that local garden. Engaging with this food bank and community garden allowed us to leverage the existing relationship between the two, and experiment and develop a framework that would demonstrate the feasibility of a long-term composting system in this community. By conducting this project throughout 2021, we saw where strategies worked well, what challenges remained, and where future opportunities could be expanded on. In the end, we diverted over 2000 lbs of uneaten food away from the food bank and into our composting system. We concluded our project report by providing a set of actionable recommendations and future framework guidelines that could be used by the local community garden in the future or be referenced to by other interested parties.
ContributorsMarshall, Meghan (Author) / Bardon, Lee (Co-author) / Nelson, Melissa (Thesis director) / Winburn, Morgan (Committee member) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2012-12