Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

137485-Thumbnail Image.png
Description
Background:
Pediatric obesity is associated with lower quality of life (QOL) and populations with high obesity rates, such as Latinos, are especially vulnerable. We examined the effects of a 12-week diabetes prevention program on changes in weight-specific QOL in Latino youth.
Method:
Fifteen obese Latino adolescents (BMI%=96.3±1.1;age=15.0±1.0) completed a 12-week

Background:
Pediatric obesity is associated with lower quality of life (QOL) and populations with high obesity rates, such as Latinos, are especially vulnerable. We examined the effects of a 12-week diabetes prevention program on changes in weight-specific QOL in Latino youth.
Method:
Fifteen obese Latino adolescents (BMI%=96.3±1.1;age=15.0±1.0) completed a 12-week intervention. Youth completed weight-specific QOL measures at baseline, post intervention, and 1-year follow-up. For comparison purposes, intervention youth were matched for age and gender with lean controls.
Results:
At baseline, obese youth exhibited significantly lower weight-specific QOL compared with lean youth (70.8±5.4 to 91.2±2.2, p<0.005). The intervention did not significantly impact weight (90.6±6.8 to 89.9±7.2kg, p=0.44). However, significant increases in weight-specific QOL were observed (70.8±20.9 to 86.2±16.9, p<0.001). Post-intervention QOL scores were no longer significantly different than lean controls (P=0.692). Data from nine youth who returned for follow-up indicated that increases in weight-specific QOL were maintained over time (90.5±4.5 to 85.8±5.9, p=0.74).
Conclusion:
These results indicate that a community-based diabetes prevention program can result in sustained improvements in weight-specific QOL among obese Latino youth. Lifestyle interventions that focus on social interaction and physical activity, rather than weight-loss per se, may help improve the psychosocial health of obese Latino youth.
ContributorsBrito, Elizabeth (Author) / Shaibi, Gabriel (Thesis director) / Barroso, Cristina (Committee member) / Patrick, Donald (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2013-05
135698-Thumbnail Image.png
Description
Traumatic brain injury (TBI) is a leading cause of injury related death in the United States. The complexity of the injury environment that follows TBI creates an incomplete understanding of all the mechanisms in place to regulate chemotactic responses to TBI. The goal of this project was to develop a

Traumatic brain injury (TBI) is a leading cause of injury related death in the United States. The complexity of the injury environment that follows TBI creates an incomplete understanding of all the mechanisms in place to regulate chemotactic responses to TBI. The goal of this project was to develop a predictive in silco model using diffusion and autocrine/paracrine signaling specific to stromal cell derived factor-1α (SDF-1α) gradient formation after TBI and compare this model with in vivo experimental data. A COMSOL model using Fickian diffusion and autocrine/paracrine reaction terms was generated to predict the gradient formation observed in vivo at three physiologically relevant time points (1, 3, and 7 days). In vivo data was gathered and analyzed via immunohistochemistry and MATLAB. The spatial distribution of SDF-1α concentration in vivo more consistently demonstrated patterns similar to the in silico model dependent on both diffusion and autocrine/paracrine reaction terms rather than diffusion alone. The temporal distribution of these same results demonstrated degradation of SDF-1α at too rapid a rate, compared to the in vivo results. To account for differences in behavior observed in vivo, reaction terms and constants of 1st-order reaction rates must be modulated to better reflect the results observed in vivo. These results from both the in silico model and in vivo data support the hypothesis that SDF-1α gradient formation after TBI depends on more than diffusion alone. Future work will focus on improving the model with constants that are specific to SDF-1α as well as testing methods to better control the degradation of SDF-1α.
ContributorsFreeman, Sabrina Louise (Author) / Stabenfeldt, Sarah (Thesis director) / Caplan, Michael (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05