Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 6 of 6
Filtering by

Clear all filters

136530-Thumbnail Image.png
Description

In light of climate change and urban sustainability concerns, researchers have been studying how residential landscape vegetation affect household water consumption and heat mitigation. Previous studies have analyzed the correlations among residential landscape practices, household water consumption, and urban heating at aggregate spatial scales to understand complex landscape decision tradeoffs

In light of climate change and urban sustainability concerns, researchers have been studying how residential landscape vegetation affect household water consumption and heat mitigation. Previous studies have analyzed the correlations among residential landscape practices, household water consumption, and urban heating at aggregate spatial scales to understand complex landscape decision tradeoffs in an urban environment. This research builds upon those studies by using parcel-level variables to explore the implications of vegetation quantity and height on water consumption and summertime surface temperatures in a set of single-family residential homes in Tempe, Arizona. QuickBird and LiDAR vegetation imagery (0.600646m/pixel), MASTER temperature data (approximately 7m/pixel), and household water billing data were analyzed. Findings provide new insights into the distinct variable, vegetation height, thereby contributing to past landscape studies at the parcel-level. We hypothesized that vegetation of different heights significantly impact water demand and summer daytime and nighttime surface temperatures among residential homes. More specifically, we investigated two hypotheses: 1) vegetation greater than 1.5 m in height will decrease daytime surface temperature more than grass coverage, and 2) grass cover will increase household water consumption more than other vegetation classes, particularly vegetation height. Bivariate and stepwise linear regressions were run to determine the predictive capacity of vegetation on surface temperature and on water consumption. Trees of 1.5m-10m height and trees of 5m-10m height lowered daytime surface temperatures. Nighttime surface temperatures were increased by trees of 5m-10m height and decreased by grass. Houses that experienced higher daytime surface temperatures consumed less water than houses with lower daytime surface temperatures, but water consumption was not directly related to vegetation cover or height. Implications of this study support the practical application of tree canopy (vegetation of 5m-10m height) to mitigate extreme surface temperatures. The trade-offs between water and vegetation classes are not yet clear because vegetation classes cannot singularly predict household water consumption.

ContributorsJia, Jessica (Co-author) / Larson, Kelli L. (Co-author, Thesis director) / Wentz, Elizabeth (Co-author, Committee member) / Barrett, The Honors College (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Sustainability (Contributor)
Created2015-05
135127-Thumbnail Image.png
Description
Access to clean drinking water has been identified by the National Academy of Engineering as one of the Grand Challenges of the 21st century. This thesis investigated clean drinking water access in the greater Phoenix area, specifically with regards to drinking water quality standards and management strategies. This research report

Access to clean drinking water has been identified by the National Academy of Engineering as one of the Grand Challenges of the 21st century. This thesis investigated clean drinking water access in the greater Phoenix area, specifically with regards to drinking water quality standards and management strategies. This research report provides an introduction to water quality, treatment, and management; a background on the Salt River Project; and an analysis on source water mix and drinking water quality indicators for water delivered to Tempe, Arizona water treatment facilities.
ContributorsMercer, Rebecca Nicole (Author) / Ganesh, Tirupalavanam (Thesis director) / Trowbridge, Amy (Committee member) / Industrial, Systems (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
137706-Thumbnail Image.png
Description
Despite similar climate, ecosystem, and population size, the cities of Hermosillo, Mexico and Mesa, USA manage their water very differently. Mesa has a stable and resilient system organized around state and federal regulations. Hermosillo, after rapidly industrializing, has not been able to cope with climate change and long-term drought conditions.

Despite similar climate, ecosystem, and population size, the cities of Hermosillo, Mexico and Mesa, USA manage their water very differently. Mesa has a stable and resilient system organized around state and federal regulations. Hermosillo, after rapidly industrializing, has not been able to cope with climate change and long-term drought conditions. Water distribution statistics, stakeholders, policy structure, and government organization were combined in an organizational framework to compare the practices of the two cities. These inputs were weighed against the outcomes and the sustainability of each system. While Mesa is part of a massive metropolitan area, Hermosillo is still developing into a metropolitan center and does not have access to the same infrastructure and resources. In Hermosillo local needs are frequently discounted in favor of broad political goals.
ContributorsMoe, Rud Lamb (Author) / Chhetri, Netra (Thesis director) / White, Dave (Committee member) / Robles-Morua, Agustin (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor) / School of Sustainability (Contributor) / School of Geographical Sciences and Urban Planning (Contributor)
Created2013-05
Description

"Black in Bleu" is a reflection on my life as a young, Black woman in America told through poetry, and music in conjunction with feminist activists' work as well as results from a survey amongst other young, black students. This paper is a window into Blackness reflecting my experiences as

"Black in Bleu" is a reflection on my life as a young, Black woman in America told through poetry, and music in conjunction with feminist activists' work as well as results from a survey amongst other young, black students. This paper is a window into Blackness reflecting my experiences as well as many others in a way to find love in that reflection. There is a playlist that goes along with the paper meant to be listened to simultaneously with the reading.

ContributorsDowning, Ciarra (Author) / Acierto, Alejandro (Thesis director) / Reyes, Ernesto (Committee member) / Barrett, The Honors College (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Sustainability (Contributor)
Created2023-05
163309-Thumbnail Image.png
Description
Food waste is a significant problem in many developed nations, especially the United States. Each year millions of pounds of uneaten or partially eaten food scraps are thrown into landfill, where it degrades anaerobically, producing methane gas emissions, contributing to foul odors, and contributing to an unsustainable food system. This

Food waste is a significant problem in many developed nations, especially the United States. Each year millions of pounds of uneaten or partially eaten food scraps are thrown into landfill, where it degrades anaerobically, producing methane gas emissions, contributing to foul odors, and contributing to an unsustainable food system. This thesis project set out to conduct a small-scale composting system that diverted would-be food waste from a local food bank to a community garden, where food scraps would decompose into compost to then be turned into a valuable, nutrient-rich amendment in that local garden. Engaging with this food bank and community garden allowed us to leverage the existing relationship between the two, and experiment and develop a framework that would demonstrate the feasibility of a long-term composting system in this community. By conducting this project throughout 2021, we saw where strategies worked well, what challenges remained, and where future opportunities could be expanded on. In the end, we diverted over 2000 lbs of uneaten food away from the food bank and into our composting system. We concluded our project report by providing a set of actionable recommendations and future framework guidelines that could be used by the local community garden in the future or be referenced to by other interested parties.
ContributorsBardon, Lee (Author) / Marshall, Meghan (Co-author) / Nelson, Melissa (Thesis director) / Winburn, Morgan (Committee member) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2021-12
163310-Thumbnail Image.png
Description
Food waste is a significant problem in many developed nations, especially the United States. Each year millions of pounds of uneaten or partially eaten food scraps are thrown into landfill, where it degrades anaerobically, producing methane gas emissions, contributing to foul odors, and contributing to an unsustainable food system. This

Food waste is a significant problem in many developed nations, especially the United States. Each year millions of pounds of uneaten or partially eaten food scraps are thrown into landfill, where it degrades anaerobically, producing methane gas emissions, contributing to foul odors, and contributing to an unsustainable food system. This thesis project set out to conduct a small-scale composting system that diverted would-be food waste from a local food bank to a community garden, where food scraps would decompose into compost to then be turned into a valuable, nutrient-rich amendment in that local garden. Engaging with this food bank and community garden allowed us to leverage the existing relationship between the two, and experiment and develop a framework that would demonstrate the feasibility of a long-term composting system in this community. By conducting this project throughout 2021, we saw where strategies worked well, what challenges remained, and where future opportunities could be expanded on. In the end, we diverted over 2000 lbs of uneaten food away from the food bank and into our composting system. We concluded our project report by providing a set of actionable recommendations and future framework guidelines that could be used by the local community garden in the future or be referenced to by other interested parties.
ContributorsMarshall, Meghan (Author) / Bardon, Lee (Co-author) / Nelson, Melissa (Thesis director) / Winburn, Morgan (Committee member) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2012-12