Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 12
Filtering by

Clear all filters

148482-Thumbnail Image.png
Description

This project concerns justification for why partner dance, particularly ballroom dance, should be a part of the Arizona public-school curriculum. It consists of a review of peer-reviewed scientific research on the subject, as well as interviews conducted with local experts on dance. Moreover, a sample curriculum is supplied that should

This project concerns justification for why partner dance, particularly ballroom dance, should be a part of the Arizona public-school curriculum. It consists of a review of peer-reviewed scientific research on the subject, as well as interviews conducted with local experts on dance. Moreover, a sample curriculum is supplied that should provide guidance on how to implement a ballroom dance program in the K-12 system. The goal of this paper is to empower educators to create ballroom dance programs in their schools, with the ultimate plan to help develop students into better citizens.

ContributorsAdams, Benjamin J (Author) / Kaplan, Robert (Thesis director) / Tsethlikai, Monica (Committee member) / Caves, Larry (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148322-Thumbnail Image.png
Description

The field of biomedical research relies on the knowledge of binding interactions between various proteins of interest to create novel molecular targets for therapeutic purposes. While many of these interactions remain a mystery, knowledge of these properties and interactions could have significant medical applications in terms of understanding cell signaling

The field of biomedical research relies on the knowledge of binding interactions between various proteins of interest to create novel molecular targets for therapeutic purposes. While many of these interactions remain a mystery, knowledge of these properties and interactions could have significant medical applications in terms of understanding cell signaling and immunological defenses. Furthermore, there is evidence that machine learning and peptide microarrays can be used to make reliable predictions of where proteins could interact with each other without the definitive knowledge of the interactions. In this case, a neural network was used to predict the unknown binding interactions of TNFR2 onto LT-ɑ and TRAF2, and PD-L1 onto CD80, based off of the binding data from a sampling of protein-peptide interactions on a microarray. The accuracy and reliability of these predictions would rely on future research to confirm the interactions of these proteins, but the knowledge from these methods and predictions could have a future impact with regards to rational and structure-based drug design.

ContributorsPoweleit, Andrew Michael (Author) / Woodbury, Neal (Thesis director) / Diehnelt, Chris (Committee member) / Chiu, Po-Lin (Committee member) / School of Molecular Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148192-Thumbnail Image.png
Description

Lyme disease is a common tick-borne illness caused by the Gram-negative bacterium Borrelia burgdorferi. An outer membrane protein of Borrelia burgdorferi, P66, has been suggested as a possible target for Lyme disease treatments. However, a lack of structural information available for P66 has hindered attempts to design medications to target

Lyme disease is a common tick-borne illness caused by the Gram-negative bacterium Borrelia burgdorferi. An outer membrane protein of Borrelia burgdorferi, P66, has been suggested as a possible target for Lyme disease treatments. However, a lack of structural information available for P66 has hindered attempts to design medications to target the protein. Therefore, this study attempted to find methods for expressing and purifying P66 in quantities that can be used for structural studies. It was found that by using the PelB signal sequence, His-tagged P66 could be directed to the outer membrane of Escherichia coli, as confirmed by an anti-His Western blot. Further attempts to optimize P66 expression in the outer membrane were made, pending verification via Western blotting. The ability to direct P66 to the outer membrane using the PelB signal sequence is a promising first step in determining the overall structure of P66, but further work is needed before P66 is ready for large-scale purification for structural studies.

ContributorsRamirez, Christopher Nicholas (Author) / Fromme, Petra (Thesis director) / Hansen, Debra (Committee member) / Department of Physics (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147652-Thumbnail Image.png
Description

DNA nanotechnology is ideally suited for numerous applications from the crystallization and solution of macromolecular structures to the targeted delivery of therapeutic molecules. The foundational goal of structural DNA nanotechnology was the development of a lattice to host proteins for crystal structure solution. To further progress towards this goal, 36

DNA nanotechnology is ideally suited for numerous applications from the crystallization and solution of macromolecular structures to the targeted delivery of therapeutic molecules. The foundational goal of structural DNA nanotechnology was the development of a lattice to host proteins for crystal structure solution. To further progress towards this goal, 36 unique four-armed DNA junctions were designed and crystallized for eventual solution of their 3D structures. While most of these junctions produced macroscale crystals which diffracted successfully, several prevented crystallization. Previous results used a fixed isomer and subsequent investigations adopted an alternate isomer to investigate the impact of these small sequence changes on the stability and structural properties of these crystals. DNA nanotechnology has also shown promise for a variety biomedical applications. In particular, DNA origami has been demonstrated as a promising tool for targeted and efficient delivery of drugs and vaccines due to their programmability and addressability to suit a variety of therapeutic cargo and biological functions. To this end, a previously designed DNA barrel nanostructure with a unique multimerizable pegboard architecture has been constructed and characterized via TEM for later evaluation of its stability under biological conditions for use in the targeted delivery of cargo, including CRISPR-containing adeno-associated viruses (AAVs) and mRNA.

ContributorsHostal, Anna Elizabeth (Author) / Anderson, Karen (Thesis director) / Stephanopoulos, Nicholas (Committee member) / Yan, Hao (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147551-Thumbnail Image.png
Description

Apolipoprotein (ApoE) plays an important role in the transport of lipids in the brain for normal functioning. There are three different isoforms of ApoE which are coded for by three alleles (E2, E3, E4). Patients carrying at least one copy of ApoE E4 are known to be at higher

Apolipoprotein (ApoE) plays an important role in the transport of lipids in the brain for normal functioning. There are three different isoforms of ApoE which are coded for by three alleles (E2, E3, E4). Patients carrying at least one copy of ApoE E4 are known to be at higher risk for developing Alzheimer’s disease (AD) and earlier onset of symptoms. This is due to the buildup of amyloid plaques and neurofibrillary tangles of the brain from the accumulation of tau proteins, which are associated with the progression of Alzheimer’s disease. However, findings on ApoE E2 have shown that it may be a protective allele since it is linked to a decreased risk of formation of amyloid plaques and neurofibrillary tangles. To study this phenomenon within the context of a local population group, polymerase chain reaction and gel electrophoresis were conducted on extracted DNA samples. The principal goal in this research study was to genotype ApoE variants using single nucleotide polymorphism (SNP) specific primers, and polymerase chain reaction to analyze the frequency in the Tempe population to determine future healthcare needs.

ContributorsBernal, Miranda (Author) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This paper explores the well-known Atkins Diet, as it also places a strong regulation on macromolecule consumption, specifically carbohydrates, in order to assist with the weight loss process. A review of available literature will be used to investigate: the history of the diet, necessity of macromolecule consumption, the impact this

This paper explores the well-known Atkins Diet, as it also places a strong regulation on macromolecule consumption, specifically carbohydrates, in order to assist with the weight loss process. A review of available literature will be used to investigate: the history of the diet, necessity of macromolecule consumption, the impact this has on the individual biochemical pathways (glycolysis/gluconeogenesis) and the microbiome as a whole, as well as overall success rates and long-term health complications/benefits. Additionally personal statements from various individuals who have experience with the diet, myself included, will be incorporated into a holistic analysis of the effectiveness and longevity of the Atkins weight-loss strategy.

ContributorsButler, Jessica Carol (Author) / Sellner, Erin (Thesis director) / Gray, Tiffany (Committee member) / College of Health Solutions (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
160678-Thumbnail Image.png
ContributorsAutote, Abreanna (Author) / Loera, Cristian Peter (Co-author) / Ingram-Waters, Mary (Thesis director) / Abril, Lauren (Committee member) / Hugh Downs School of Human Communication (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
160679-Thumbnail Image.png
ContributorsAutote, Abreanna (Author) / Loera, Cristian Peter (Co-author) / Ingram-Waters, Mary (Thesis director) / Abril, Lauren (Committee member) / Hugh Downs School of Human Communication (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
160681-Thumbnail Image.png
ContributorsLoera, Cristian Peter (Author) / Autote, Aubreanna (Co-author) / Ingram-Waters, Mary (Thesis director) / Abril, Lauren (Committee member) / Hugh Downs School of Human Communication (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
160682-Thumbnail Image.png
ContributorsLoera, Cristian Peter (Author) / Autote, Aubreanna (Co-author) / Ingram-Waters, Mary (Thesis director) / Abril, Lauren (Committee member) / Hugh Downs School of Human Communication (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05