Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

136674-Thumbnail Image.png
Description
As prices for fuel along with the demand for renewable resources grow, it becomes of paramount importance to develop new ways of obtaining the energy needed to carry out the tasks we face daily. Costs of production due to energy and time constraints impose severe limitations on what is viable.

As prices for fuel along with the demand for renewable resources grow, it becomes of paramount importance to develop new ways of obtaining the energy needed to carry out the tasks we face daily. Costs of production due to energy and time constraints impose severe limitations on what is viable. Biological systems, on the other hand, are innately efficient both in terms of time and energy by handling tasks at the molecular level. Utilizing this efficiency is at the core of this research. Proper manipulation of even common proteins can render complexes functionalized for specific tasks. In this case, the coupling of a rhenium-based organometallic ligand to a modified myoglobin containing a zinc porphyrin, allow for efficient reduction of carbon dioxide, resulting in energy that can be harnessed and byproducts which can be used for further processing. Additionally, a rhenium based ligand functionalized via biotin is tested in conjunction with streptavidin and ruthenium-bipyridine.
ContributorsAllen, Jason Kenneth (Author) / Ghirlanda, Giovanna (Thesis director) / Francisco, Wilson (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-12
136136-Thumbnail Image.png
Description
Three populations of experimentally evolved Drosophila melanogaster populations made up of high temperature (H, constant 25 ᵒC), low temperature (C, constant 16 ᵒC) and temporal homogeneity (T, environment changes between 16 ᵒC and 25 ᵒC) were prepared and assayed to determine difference in citrate synthase activity. Between the three groups,

Three populations of experimentally evolved Drosophila melanogaster populations made up of high temperature (H, constant 25 ᵒC), low temperature (C, constant 16 ᵒC) and temporal homogeneity (T, environment changes between 16 ᵒC and 25 ᵒC) were prepared and assayed to determine difference in citrate synthase activity. Between the three groups, the results were inconclusive: the resulting reaction rates in units of nmol min-1mgfly-1 were 81.8 + 20.6, 101 + 15.6, and 96.9 + 25.2 for the hot (H), cold (C), and temporally homogeneous (T) groups, respectively. We conclude that the high associated variability was due to a lack of control regarding the collection time of the experimentally evolved Drosophila.
ContributorsBelohlavek, David (Author) / Angilletta, Michael (Thesis director) / Francisco, Wilson (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
136872-Thumbnail Image.png
Description
Quercetin 2,3-dioxygenase from Bacillus subtilis has been identified and characterized as the first known prokaryotic quercetinase. This enzyme catalyzes the cleavage of the O-heteroaromatic ring of the flavonol quercetin to the corresponding depside and carbon monoxide. The first quercetinase was characterized from a species of Aspergillus genus, and was found

Quercetin 2,3-dioxygenase from Bacillus subtilis has been identified and characterized as the first known prokaryotic quercetinase. This enzyme catalyzes the cleavage of the O-heteroaromatic ring of the flavonol quercetin to the corresponding depside and carbon monoxide. The first quercetinase was characterized from a species of Aspergillus genus, and was found to contain one Cu2+ per subunit. For many years, it was thought that the B. subtilis quercetinase contained two Fe2+ ions per subunit; however, it has since been discovered that Mn2+ is a much more likely cofactor. Studies of overexpressed bacterial enzyme in E. coli indicated that this enzyme may be active with other metal ions (e.g. Co2+); however, the production of enzyme with full metal incorporation has only been possible with Mn2+. This study explores the notion that metal manipulation after translation, by partially unfolding the enzyme, chelating the metal ions, and then refolding the protein in the presence of an excess of divalent metal ions, could generate enzyme with full metal occupancy. The protocols presented here included testing for activity after incubating purified quercetinase with EDTA, DDTC, imidazole and GndHCl. It was found that the metal chelators had little to no effect on quercetinase activity. Imidazole did appear to inhibit the enzyme at concentrations in the millimolar range. In addition, the quercetinase was denatured in GndHCl at concentrations above 1 M. Recovering an active enzyme after partial or complete unfolding proved difficult, if not impossible.
ContributorsKrojanker, Elan Daniel (Author) / Francisco, Wilson (Thesis director) / Allen, James P. (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-05