Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 4 of 4
Filtering by

Clear all filters

132988-Thumbnail Image.png
Description
Extensive efforts have been made to develop efficient and low-cost methods for diagnostics to identify molecular biomarkers that are linked to a wide array of conditions, including cancer. A highly developed method includes utilizing the gene-editing enzyme CRISPR-Cas12a (Cpf1), which demonstrates double-stranded DNase activity with RuvC catalytic domain with high

Extensive efforts have been made to develop efficient and low-cost methods for diagnostics to identify molecular biomarkers that are linked to a wide array of conditions, including cancer. A highly developed method includes utilizing the gene-editing enzyme CRISPR-Cas12a (Cpf1), which demonstrates double-stranded DNase activity with RuvC catalytic domain with high sensitivity and specificity. This DNase activity is RNA-guided and requires a T-rich PAM site on the target sequence for functional cleavage. There have been recent efforts to utilize this DNase activity of Cas12a by combining it with isothermal amplification and analysis by lateral strip tests. This project examined CRISPR-based early detection of microRNA biomarkers. MicroRNA are short RNA molecules that have large roles in post-transcriptional gene regulation. However, due the short length of microRNA and its single-stranded nature, it is challenging to use Cas12a for microRNA detection using existing methods. Thus, this project investigated the potential of two microRNA detection strategies for recognition by CRISPR-Cas12a. These methods were microRNA-splinted ligation with polymerase chain reaction (PCR) and MicroRNA-specific reverse transcriptase PCR (RT-PCR). Gel imaging demonstrated effective amplification of ligated DNA through microRNA-splinted ligation with PCR/RPA. In addition, lateral strips tests showed effective cleavage of the target sequences by Cas12a. However, RT-PCR method demonstrated low amplification by PCR and inefficient poly(A) elongation. This project paves the way for the detection of an extensive range of microRNA biomarkers that are linked to an array of diseases. Future directions include analysis and modifications of RT-PCR method to improve experimental results, extending these detection methods to a larger range of microRNA sequences, and eventually utilizing them for detection in human samples.
ContributorsStaren, Michael Steven (Author) / Green, Alexander (Thesis director) / Stephanopoulos, Nicholas (Committee member) / Diehnelt, Chris (Committee member) / School of Life Sciences (Contributor) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
135814-Thumbnail Image.png
Description
The two chapters of this thesis focus on different aspects of DNA and the properties of nucleic acids as the whole. Chapter 1 focuses on the structure of DNA and its relationship to enzymatic efficiency. Chapter 2 centers itself on threose nucleic acid and optimization of a step in the

The two chapters of this thesis focus on different aspects of DNA and the properties of nucleic acids as the whole. Chapter 1 focuses on the structure of DNA and its relationship to enzymatic efficiency. Chapter 2 centers itself on threose nucleic acid and optimization of a step in the path to its synthesis. While Chapter 1 discusses DNA and Uracil-DNA Glycosylase with regards to the base excision repair pathway, Chapter 2 focuses on chemical synthesis of an intermediate in the pathway to the synthesis of TNA, an analogous structure with a different saccharide in the sugar-phosphate backbone.
Chapter 1 covers the research under Dr. Levitus. Four oligonucleotides were reacted for zero, five, and thirty minutes with uracil-DNA glycosylase and subsequent addition of piperidine. These oligonucleotides were chosen based on their torsional rigidities as predicted by past research and predictions. The objective was to better understand the relationship between the sequence of DNA surrounding the incorrect base and the enzyme’s ability to remove said base in order to prepare the DNA for the next step of the base excision repair pathway. The first pair of oligonucleotides showed no statistically significant difference in enzymatic efficiency with p values of 0.24 and 0.42, while the second pair had a p value of 0.01 at the five-minute reaction. The second pair is currently being researched at different reaction times to determine at what point the enzyme seems to equilibrate and react semi-equally with all sequences of DNA.
Chapter 2 covers the research conducted under Dr. Chaput. Along the TNA synthesis pathway, the nitrogenous base must be added to the threofuranose sugar. The objective was to optimize the original protocol of Vorbrüggen glycosylation and determine if there were better conditions for the synthesis of the preferred regioisomer. This research showed that toluene and ortho-xylene were more preferable as solvents than the original anhydrous acetonitrile, as the amount of preferred isomer product far outweighed the amount of side product formed, as well as improving total yield overall. The anhydrous acetonitrile reaction had a final yield of 60.61% while the ortho-xylene system had a final yield of 94.66%, an increase of approximately 32%. The crude ratio of preferred isomer to side product was also improved, as it went from 18% undesired in anhydrous acetonitrile to 4% undesired in ortho-xylene, both values normalized to the preferred regioisomer.
ContributorsTamirisa, Ritika Sai (Author) / Levitus, Marcia (Thesis director) / Stephanopoulos, Nicholas (Committee member) / Windman, Todd (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
147652-Thumbnail Image.png
Description

DNA nanotechnology is ideally suited for numerous applications from the crystallization and solution of macromolecular structures to the targeted delivery of therapeutic molecules. The foundational goal of structural DNA nanotechnology was the development of a lattice to host proteins for crystal structure solution. To further progress towards this goal, 36

DNA nanotechnology is ideally suited for numerous applications from the crystallization and solution of macromolecular structures to the targeted delivery of therapeutic molecules. The foundational goal of structural DNA nanotechnology was the development of a lattice to host proteins for crystal structure solution. To further progress towards this goal, 36 unique four-armed DNA junctions were designed and crystallized for eventual solution of their 3D structures. While most of these junctions produced macroscale crystals which diffracted successfully, several prevented crystallization. Previous results used a fixed isomer and subsequent investigations adopted an alternate isomer to investigate the impact of these small sequence changes on the stability and structural properties of these crystals. DNA nanotechnology has also shown promise for a variety biomedical applications. In particular, DNA origami has been demonstrated as a promising tool for targeted and efficient delivery of drugs and vaccines due to their programmability and addressability to suit a variety of therapeutic cargo and biological functions. To this end, a previously designed DNA barrel nanostructure with a unique multimerizable pegboard architecture has been constructed and characterized via TEM for later evaluation of its stability under biological conditions for use in the targeted delivery of cargo, including CRISPR-containing adeno-associated viruses (AAVs) and mRNA.

ContributorsHostal, Anna Elizabeth (Author) / Anderson, Karen (Thesis director) / Stephanopoulos, Nicholas (Committee member) / Yan, Hao (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Molecular engineering is an emerging field that aims to create functional devices for modular purposes, particularly bottom-up design of nano-assemblies using mechanical and chemical methods to perform complex tasks. In this study, we present a novel method for constructing an RNA clamp using circularized RNA and a broccoli aptamer for

Molecular engineering is an emerging field that aims to create functional devices for modular purposes, particularly bottom-up design of nano-assemblies using mechanical and chemical methods to perform complex tasks. In this study, we present a novel method for constructing an RNA clamp using circularized RNA and a broccoli aptamer for fluorescence sensing. By designing a circular RNA with the broccoli aptamer and a complementary DNA strand, we created a molecular clamp that can stabilize the aptamer. The broccoli aptamer displays enhanced fluorescence when bound to its ligand, DFHBI-1T. Upon induction with this small molecule, the clamp can exhibit or destroy fluorescence. We demonstrated that we could control the fluorescence of the RNA clamp by introducing different complementary DNA strands, which regulate the level of fluorescence. Additionally, we designed allosteric control by introducing new DNA strands, making the system reversible. We explored the use of mechanical tension to regulate RNA function by attaching a spring-like activity through the RNA clamp to two points on the RNA surface. By adjusting the stiffness of the spring, we could control the tension between the two points and induce reversible conformational changes, effectively turning RNA function on and off. Our approach offers a simple and versatile method for creating RNA clamps with various applications, including RNA detection, regulation, and future nanodevice design. Our findings highlight the crucial role of mechanical forces in regulating RNA function, paving the way for developing new strategies for RNA manipulation, and potentially advancing molecular engineering. Although the current work is ongoing, we provide current progress of both theoretical and experimental calculations based on our findings.

ContributorsJoseph, Joel (Author) / Yan, Hao (Thesis director) / Stephanopoulos, Nicholas (Committee member) / Lapinaite, Audrone (Committee member) / Barrett, The Honors College (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05