Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

164690-Thumbnail Image.png
Description
In algae, the Mutant Affecting Retrograde Signaling (MARS1) Kinase plays a critical role in the chloroplast unfolded protein response (cpUPR) when the chloroplast faces proteotoxic stress4. The MARS1 protein is relatively unknown in terms of structure and function. However, there has been ample research performed on the main pathway associated

In algae, the Mutant Affecting Retrograde Signaling (MARS1) Kinase plays a critical role in the chloroplast unfolded protein response (cpUPR) when the chloroplast faces proteotoxic stress4. The MARS1 protein is relatively unknown in terms of structure and function. However, there has been ample research performed on the main pathway associated with the MARS1 protein, the cpUPR. The exact mechanism of why MARS1 is necessary for the cpUPR is still unknown. Our structural and biochemical studies will help develop a better understanding of the MARS1 structure, and the role it plays in the cpUPR. The MARS1 expression construct will be assembled following the yeast golden gate (yGG) assembly protocol. Here, we will attempt to recombinantly express MARS1 kinase in Saccharomyces cerevisiae to provide insights into the protein.
ContributorsHeeres, Nicholas (Author) / Mazor, Yuval (Thesis director) / Chiu, Po Lin (Committee member) / Redding, Kevin (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2022-05