Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

136419-Thumbnail Image.png
Description
A literature review summarizing the current status of conservation efforts of the Mojave Desert tortoise (Gopherus agassizii) including a brief overview of the Endangered Species Act (ESA) and its applicability to this species' conservation. A genetic and physiological comparison of the morphologically similar Mojave species with the Sonoran (Gopherus morafkai)

A literature review summarizing the current status of conservation efforts of the Mojave Desert tortoise (Gopherus agassizii) including a brief overview of the Endangered Species Act (ESA) and its applicability to this species' conservation. A genetic and physiological comparison of the morphologically similar Mojave species with the Sonoran (Gopherus morafkai) species proceeded by an analysis of if and how the ESA should apply to the Sonoran population. Analysis of current plans and interagency cooperations followed by a multi-step proposal on how best to conserve the Sonoran population of Desert tortoise.
ContributorsKulik, Elise Chikako (Author) / Kusumi, Kenro (Thesis director) / Tollis, Marc (Committee member) / Wilson Sayres, Melissa (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Life Sciences (Contributor)
Created2015-05
Description
Wound healing is a complex tissue response that requires a coordinated interplay of multiple cells in orchestrated biological processes to restore the skin's barrier function post-injury. Proteolytic enzymes, in particular matrix metalloproteinases (MMPs), contribute to all phases of the healing process by regulating immune cell influx, clearing out the extracellular

Wound healing is a complex tissue response that requires a coordinated interplay of multiple cells in orchestrated biological processes to restore the skin's barrier function post-injury. Proteolytic enzymes, in particular matrix metalloproteinases (MMPs), contribute to all phases of the healing process by regulating immune cell influx, clearing out the extracellular matrix (ECM), and remodeling scar tissue. As a result of these various functions in the healing of skin wounds, uncontrolled activities of MMPs are associated with impaired wound healing. The MMP gene family consists of a highly conserved set of genes. Deleterious mutations in MMP genes cause developmental phenotypes that affect the heart, skeleton, and immune system response. The availability of contiguous draft genomes of non-model organisms enables the study of gene families through analysis of synteny and sequence identity. My project is aimed at conducting a comparative genomic analysis of the MMP gene family from the genomes of 29 tetrapod species—with an emphasis on reptiles. Results regarding the similarities and differences among MMP protein sequences can be further investigated to shed light on the causes which give rise to various adaptive mutations for specific species groups.
ContributorsYu, Alexander (Author) / Kusumi, Kenro (Thesis director) / Dolby, Greer (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-12
Description
Terrestrial hermit crabs serve an incredibly important ecological role in seed dispersal and as decomposers along coastal shorelines. They have also become quite popular in the commercial pet trade, with one species, Coenobita clypeatus, being particularly favored. Typically, these hermit crabs are easily captured and removed from the wild with

Terrestrial hermit crabs serve an incredibly important ecological role in seed dispersal and as decomposers along coastal shorelines. They have also become quite popular in the commercial pet trade, with one species, Coenobita clypeatus, being particularly favored. Typically, these hermit crabs are easily captured and removed from the wild with little protection in their native ranges. In Hermitage Bay, Tobago, there is little information about the population numbers, composition, shell preference, and substrate preference of C. clypeatus in their native habitat. In this study, we estimated population size, gastropod shell preferences, and substrate preference conditions when clustering. We conducted mark re-capture surveys in March, July, and December 2023 and collected morphological data from captured hermit crabs. Our results indicate that the estimated population was highest in July, with the variation being significant when using the Schnabel mark re-capture estimation formula. The most common overall shell type, Columbella mercatoria (West Indian Dove Shell), was prevalent among the smaller sized, younger hermit crabs; while the larger hermit crabs preferred Cittarium pica (West Indian Top Shell). The most preferred substrate for these terrestrial hermit crabs were areas with a mixture of sand and dirt, with high amounts of vegetation and leaf waste and low amounts of human litter. These results suggest a predominantly young population and that beach cleanups should focus on removing human litter entirely, while leaving leaf waste and other fallen logs and branches and not using the collected decomposing plant matter for bonfires. This can help maintain a healthy hermit crab population that continues to benefit the coastlines in Tobago as well as other ecosystems.
ContributorsLindteigen, Amy (Author) / Briggs, Georgette (Thesis director) / Mohammed, Ryan (Committee member) / Barrett, The Honors College (Contributor) / College of Integrative Sciences and Arts (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2024-05