Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

Description

Climate is a critical determinant of agricultural productivity, and the ability to accurately predict this productivity is necessary to provide guidance regarding food security and agricultural management. Previous predictions vary in approach due to the myriad of factors influencing agricultural productivity but generally suggest long-term declines in productivity and agricultural

Climate is a critical determinant of agricultural productivity, and the ability to accurately predict this productivity is necessary to provide guidance regarding food security and agricultural management. Previous predictions vary in approach due to the myriad of factors influencing agricultural productivity but generally suggest long-term declines in productivity and agricultural land suitability under climate change. In this paper, I relate predicted climate changes to yield for three major United States crops, namely corn, soybeans, and wheat, using a moderate emissions scenario. By adopting data-driven machine learning approaches, I used the following machine learning methods: random forest (RF), extreme gradient boosting (XGB), and artificial neural networks (ANN) to perform comparative analysis and ensemble methodology. I omitted the western US due to the region's susceptibility to water stress and the prevalence of artificial irrigation as a means to compensate for dry conditions. By considering only climate, the model's results suggest an ensemble mean decline in crop yield of 23.4\% for corn, 19.1\% for soybeans, and 7.8\% for wheat between the years of 2017 and 2100. These results emphasize potential negative impacts of climate change on the current agricultural industry as a result of shifting bio-climactic conditions.

ContributorsSwarup, Shray (Author) / Eikenberry, Steffen (Thesis director) / Mahalov, Alex (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05
166652-Thumbnail Image.png
Description
Adaptive capacity to climate change is the ability of a system to mitigate or take advantage of climate change effects. Research on adaptive capacity to climate change suffers fragmentation. This is partly because there is no clear consensus around precise definitions of adaptive capacity. The aim of this thesis is

Adaptive capacity to climate change is the ability of a system to mitigate or take advantage of climate change effects. Research on adaptive capacity to climate change suffers fragmentation. This is partly because there is no clear consensus around precise definitions of adaptive capacity. The aim of this thesis is to place definitions of adaptive capacity into a formal framework. I formalize adaptive capacity as a computational model written in the Idris 2 programming language. The model uses types to constrain how the elements of the model fit together. To achieve this, I analyze nine existing definitions of adaptive capacity. The focus of the analysis was on important factors that affect definitions and shared elements of the definitions. The model is able to describe an adaptive capacity study and guide a user toward concepts lacking clarity in the study. This shows that the model is useful as a tool to think about adaptive capacity. In the future, one could refine the model by forming an ontology for adaptive capacity. One could also review the literature more systematically. Finally, one might consider turning to qualitative research methods for reviewing the literature.
ContributorsManuel, Jason (Author) / Bazzi, Rida (Thesis director) / Pavlic, Theodore (Committee member) / Middel, Ariane (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
161183-Thumbnail Image.png
Description

For my creative project thesis, I have designed and developed a video game called Amity Academy. Amity Academy is a strategic resource management simulator that aims to subvert genre expectations and challenge generally accepted definitions of success and leadership both in-game and in the real world. It does so by

For my creative project thesis, I have designed and developed a video game called Amity Academy. Amity Academy is a strategic resource management simulator that aims to subvert genre expectations and challenge generally accepted definitions of success and leadership both in-game and in the real world. It does so by moving the focus away from amassing large amounts of in-game currencies and becoming politically or militarily dominant towards caring for the denizens of the social unit the player controls. The player acts as an administrator at a school where they must make decisions on how to best run the institution. Although they are allowed to lead the school however they see fit, the emphasis is on prioritizing strong interpersonal and intracommunity relationships and connections and the wellbeing and happiness of those under their ward. Amity Academy is also part of the newly-emerging “wholesome” or “comfy” game genre. Unlike serious strategy games that can be stressful, Amity Academy presents a self-paced, low-stakes situation. This mood is further encouraged by calming environmental noises and music, a gentle color palette, and a charming art style. The game feels domestic and quaint, almost reminiscent of a Jane Wooster Scott or Mary Singleton painting. You can download and play Amity Academy here: https://mvaughn8.itch.io/amity-academy

ContributorsVaughn, Meghan (Author) / Kobayashi, Yoshihiro (Thesis director) / Holmes, Jeffrey (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor)
Created2021-12