Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 171
Filtering by

Clear all filters

131526-Thumbnail Image.png
Description
Aquatic macroinvertebrates are important for many ecological processes within river ecosystems and, as a result, their abundance and diversity are considered indicators of water quality and ecosystem health. Macroinvertebrates can be classified into functional feeding groups (FFG) based on morphological-behavioral adaptations. FFG ratios can shift due to changes

Aquatic macroinvertebrates are important for many ecological processes within river ecosystems and, as a result, their abundance and diversity are considered indicators of water quality and ecosystem health. Macroinvertebrates can be classified into functional feeding groups (FFG) based on morphological-behavioral adaptations. FFG ratios can shift due to changes in normal disturbance patterns, such as changes in precipitation, and from human impact. Due to their increased sensitivity to environmental changes, it has become more important to protect and monitor aquatic and riparian communities in arid regions as climate change continues to intensify. Therefore, the diversity and richness of macroinvertebrate FFGs before and after monsoon and winter storm seasons were analyzed to determine the effect of flow-related disturbances. Ecosystem size was also considered, as watershed area has been shown to affect macroinvertebrate diversity. There was no strong support for flow-related disturbance or ecosystem size on macroinvertebrate diversity and richness. This may indicate a need to explore other parameters of macroinvertebrate community assembly. Establishing how disturbance affects aquatic macroinvertebrate communities will provide a key understanding as to what the stream communities will look like in the future, as anthropogenic impacts continue to affect more vulnerable ecosystems.
ContributorsSainz, Ruby (Author) / Sabo, John (Thesis director) / Grimm, Nancy (Committee member) / Lupoli, Christina (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
The importance of efficient design and development teams in in 21st century is evident after the compressive literate review was performed to digest various aspects of benefits and foundation of teamwork. Although teamwork may have variety of applications in many different industries, the new emerging biomedical engineering is growing significantly

The importance of efficient design and development teams in in 21st century is evident after the compressive literate review was performed to digest various aspects of benefits and foundation of teamwork. Although teamwork may have variety of applications in many different industries, the new emerging biomedical engineering is growing significantly using principles of teamwork. Studying attributes and mechanism of creating successful biomedical engineering teams may even contribute more to the fast paste growth of this industry. In comprehensive literate review performed, general importance of teamwork was studied. Also specific hard and soft attributes which may contribute to teamwork was studied. Currently, there are number of general assessment tools which assists managements in industry and academia to systematically bring qualified people together to flourish their talents and skills as members of a biomedical engineering teams. These assessment tools, although are useful, but are not comprehensive, incorporating literature review attributes, and also doesn't not contain student perspective who have experience as being part of a design and development team. Although there are many scientific researches and papers designated to this matter, but there is no study which purposefully studies development of an assessment tool which is designated to biomedical engineering workforce and is constructed of both literature, current assessment tools, and also student perspective. It is hypothesized that a more comprehensive composite assessment tool that incorporate both soft and hard team attributes from a combined professional and student perspective could be implemented in the development of successful Biomedical Engineering Design and Development teams and subsequently used in 21st century workforce.
ContributorsAfzalian Naini, Nima (Author) / Pizziconi, Vincent (Thesis director) / Ankeny, Casey (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
Abstract
The aim of the research performed was to increase research potential in the field of cell stimulation by developing a method to adhere human neural progenitor cells (hNPC’s) to a sterilized stretchable microelectrode array (SMEA). The two primary objectives of our research were to develop methods of sterilizing the polydimethylsiloxane

Abstract
The aim of the research performed was to increase research potential in the field of cell stimulation by developing a method to adhere human neural progenitor cells (hNPC’s) to a sterilized stretchable microelectrode array (SMEA). The two primary objectives of our research were to develop methods of sterilizing the polydimethylsiloxane (PDMS) substrate being used for the SMEA, and to derive a functional procedure for adhering hNPC’s to the PDMS. The proven method of sterilization was to plasma treat the sample and then soak it in 70% ethanol for one hour. The most successful method for cell adhesion was plasma treating the PDMS, followed by treating the surface of the PDMS with 0.01 mg/mL poly-l-lysine (PLL) and 3 µg/cm2 laminin. The development of these methods was an iterative process; as the methods were tested, any problems found with the method were corrected for the next round of testing until a final method was confirmed. Moving forward, the findings will allow for cell behavior to be researched in a unique fashion to better understand the response of adherent cells to physical stimulation by measuring changes in their electrical activity.
ContributorsBridgers, Carson (Co-author) / Peterson, Mara (Co-author) / Stabenfeldt, Sarah (Thesis director) / Graudejus, Oliver (Committee member) / Harrington Bioengineering Program (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
This research looks at a group of students from Tumaini Children's Home in Nyeri, Kenya. The purpose of this paper is to explore why this particular group of students is so academically successful. Quantitative research was taken from the average 2013 test scores of Tumaini students who took the Kenyan

This research looks at a group of students from Tumaini Children's Home in Nyeri, Kenya. The purpose of this paper is to explore why this particular group of students is so academically successful. Quantitative research was taken from the average 2013 test scores of Tumaini students who took the Kenyan Certificate of Primary Education (KCPE) exam in comparison to the scores of students who are not residing in the orphanage. Qualitative research involves interviews from those students who live in Tumaini and interviews from adults who are closely connected to the orphanage. The purpose is to understand why the students are performing so well academically and what support they have created for themselves that allows them to do so.
ContributorsTooker, Amy Elizabeth (Author) / Puckett, Kathleen (Thesis director) / Cocchiarella, Martha (Committee member) / Barrett, The Honors College (Contributor) / Division of Teacher Preparation (Contributor)
Created2014-12
136778-Thumbnail Image.png
Description
The Honors Thesis involved the use of vertically-aligned, piezoelectric nanowire sensor arrays configured by Dr. Henry A. Sodano and Dr. Aneesh Koka from the University of Florida, in order to acquire acceleration data. Originally, the project was focused on interfacing and calibrating the barium titanate (BaTio3) sensors to measure wall

The Honors Thesis involved the use of vertically-aligned, piezoelectric nanowire sensor arrays configured by Dr. Henry A. Sodano and Dr. Aneesh Koka from the University of Florida, in order to acquire acceleration data. Originally, the project was focused on interfacing and calibrating the barium titanate (BaTio3) sensors to measure wall shear stress, a fluid dynamic characteristic. In order to gain an understanding of these novel piezoelectric sensors, the experiments performed by Sodano and Koka were to be investigated, replicated, and results reproduced. After initial trial phases, signals failed to be consistently measured from the sensors and the project's emphasis was re-defined. The outlined goals were 1) to re-design the initial system used for signal acquisition, 2) test the improved signal acquisition system, 3) successfully measure output signals from the BaTiO3 nanowire sensors, and 4) determine the cause for inconsistent signal measurements from the piezoelectric nanawire sensors. Following a detailed review of the previous experimental procedures and the initial signal acquisition system, an improved acquisition system was designed and its expected behavior was tested and verified. Despite the introduction of the improved acquisition system, voltage outputs were unable to be measured as a function of shaker table acceleration. It was impossible to verify the effect of the improved signal acquisition system on the measured BaTiO3 nanowire sensor output. Based on an analysis of data collected using a commercial 3-axis acceleromoeter, it is hypothesized that the BaTiO3 nanowire sensors were broken after the first experimental trial due to an excessively applied force from an external source (i.e. shaker table, improper handling during experimentation, and/or improper handling during transportation).
ContributorsThomas, Jonah (Author) / Frakes, David (Thesis director) / LaBelle, Jeffrey (Contributor) / Barrett, The Honors College (Contributor)
Created2014-05
136798-Thumbnail Image.png
Description
The purpose of this project was to examine the viability of protein biomarkers in pre-symptomatic detection of lung cancer. Regular screening has been shown to vastly improve patient survival outcome. Lung cancer currently has the highest occurrence and mortality of all cancers and so a means of screening would be

The purpose of this project was to examine the viability of protein biomarkers in pre-symptomatic detection of lung cancer. Regular screening has been shown to vastly improve patient survival outcome. Lung cancer currently has the highest occurrence and mortality of all cancers and so a means of screening would be highly beneficial. In this research, the biomarker neuron-specific enolase (Enolase-2, eno2), a marker of small-cell lung cancer, was detected at varying concentrations using electrochemical impedance spectroscopy in order to develop a mathematical model of predicting protein expression based on a measured impedance value at a determined optimum frequency. The extent of protein expression would indicate the possibility of the patient having small-cell lung cancer. The optimum frequency was found to be 459 Hz, and the mathematical model to determine eno2 concentration based on impedance was found to be y = 40.246x + 719.5 with an R2 value of 0.82237. These results suggest that this approach could provide an option for the development of small-cell lung cancer screening utilizing electrochemical technology.
ContributorsEvans, William Ian (Author) / LaBelle, Jeffrey (Thesis director) / Spano, Mark (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
136451-Thumbnail Image.png
Description
The Latino population is the fastest growing minority group in the United States (U.S Census Bureau, 2003). Such a rapidly changing demographic stresses the importance of implementing strategies into the community social framework to accommodate for cultural and language differences. This research paper seeks to answer: what factors influence the

The Latino population is the fastest growing minority group in the United States (U.S Census Bureau, 2003). Such a rapidly changing demographic stresses the importance of implementing strategies into the community social framework to accommodate for cultural and language differences. This research paper seeks to answer: what factors influence the sense of community among Latino families in Phoenix? The following questions will help to assess the dynamic relationship between sense of community and literacy 1) what is the perceived importance of literacy among Latino families living in Phoenix? 2) How is language development reflected among the family dynamics within a predominantly collectivist culture? It is hypothesized that both collectivism and literacy are the main influences on sense of community among this population.
ContributorsBennett, Julie (Author) / Glenberg, Arthur (Thesis director) / Restrepo, Laida (Committee member) / Barrett, The Honors College (Contributor) / School of Politics and Global Studies (Contributor) / School of International Letters and Cultures (Contributor)
Created2015-05
136361-Thumbnail Image.png
Description
Determining the characteristics of an object during a grasping task requires a combination of mechanoreceptors in the muscles and fingertips. The width of a person's finger aperture during the grasp may affect the accuracy of how that person determines hardness, as well. These experiments aim to investigate how an individual

Determining the characteristics of an object during a grasping task requires a combination of mechanoreceptors in the muscles and fingertips. The width of a person's finger aperture during the grasp may affect the accuracy of how that person determines hardness, as well. These experiments aim to investigate how an individual perceives hardness amongst a gradient of varying hardness levels. The trend in the responses is assumed to follow a general psychometric function. This will provide information about subjects' abilities to differentiate between two largely different objects, and their tendencies towards guess-chances upon the presentation of two similar objects. After obtaining this data, it is then important to additionally test varying finger apertures in an object-grasping task. This will allow an insight into the effect of aperture on the obtained psychometric function, thus ultimately providing information about tactile and haptic feedback for further application in neuroprosthetic devices. Three separate experiments were performed in order to test the effect of finger aperture on object hardness differentiation. The first experiment tested a one-finger pressing motion among a hardness gradient of ballistic gelatin cubes. Subjects were asked to compare the hardness of one cube to another, which produced the S-curve that accurately portrayed the psychometric function. The second experiment utilized the Phantom haptic device in a similar setup, using the precision grip grasping motion, instead. This showed a more linear curve; the percentage reported harder increased as the hardness of the second presented cube increased, which was attributed to both the experimental setup limitations and the scale of the general hardness gradient. The third experiment then progressed to test the effect of three finger apertures in the same experimental setup. By providing three separate testing scenarios in the precision grip task, the experiment demonstrated that the level of finger aperture has no significant effect on an individual's ability to perceive hardness.
ContributorsMaestas, Gabrielle Elise (Author) / Helms Tillery, Stephen (Thesis director) / Tanner, Justin (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
136229-Thumbnail Image.png
Description
Introduction/Purpose: This paper describes the process of the community needs assessment phase of program implementation for the Student Health Outreach for Wellness (SHOW) clinic. Homeless individuals are more likely (than non homeless individuals) to experience serious illness, depression and mental illness. Access to health care has been identified as a

Introduction/Purpose: This paper describes the process of the community needs assessment phase of program implementation for the Student Health Outreach for Wellness (SHOW) clinic. Homeless individuals are more likely (than non homeless individuals) to experience serious illness, depression and mental illness. Access to health care has been identified as a barrier to receiving appropriate health care to manage the diseases and conditions clients may have. SHOW's vision is to operate on Saturdays utilizing Health Care for the Homeless (HCH) to offer extended primary health care hours, along with offering health promotion programming to address the biopsychosocial components of their health. Ultimately, this aims to reduce the homeless population's need to visit emergency room departments for non- urgent, primary care visits. Methods: To validate the need for this clinic's operation of programming and health services, a community needs assessment was conducted to collect data about the population's current health status. Forty-three people (n=43) ages 20-76 (M = 44.87) were surveyed by a trained research team using interview questionnaires. Results: The results show a prevalence of self\u2014reported physical and behavioral conditions, and support that this population would benefit from extended hours of care. Mental and behavioral health conditions are the most prevalent conditions (with the highest rates of depression (41.86%) and anxiety disorder (32.56%)), followed by the common cold (23.36%) and back pain (16.28%). The average reported emergency department (ED) visits within the past six months was 1.18 times. Almost everyone surveyed would visit a free medical clinic on the Human Services Campus (HSC) staffed by health staff and health professional students on the weekends (93.18%). Conclusion: Overall, the community needs assessment conducted for SHOW supports the need for weekend access to health care facilities and an interest in health programming for this population.
ContributorsShqalsi, Eneida Agustin (Author) / Hoffner, Kristin (Thesis director) / Harrell, Susan (Committee member) / Harper, Erin (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2015-05
133398-Thumbnail Image.png
Description
Skin and muscle receptors in the leg and foot provide able-bodied humans with force and position information that is crucial for balance and movement control. In lower-limb amputees however, this vital information is either missing or incomplete. Amputees typically compensate for the loss of sensory information by relying on haptic

Skin and muscle receptors in the leg and foot provide able-bodied humans with force and position information that is crucial for balance and movement control. In lower-limb amputees however, this vital information is either missing or incomplete. Amputees typically compensate for the loss of sensory information by relying on haptic feedback from the stump-socket interface. Unfortunately, this is not an adequate substitute. Areas of the stump that directly interface with the socket are also prone to painful irritation, which further degrades haptic feedback. The lack of somatosensory feedback from prosthetic legs causes several problems for lower-limb amputees. Previous studies have established that the lack of adequate sensory feedback from prosthetic limbs contributes to poor balance and abnormal gait kinematics. These improper gait kinematics can, in turn, lead to the development of musculoskeletal diseases. Finally, the absence of sensory information has been shown to lead to steeper learning curves and increased rehabilitation times, which hampers amputees from recovering from the trauma. In this study, a novel haptic feedback system for lower-limb amputees was develped, and studies were performed to verify that information presented was sufficiently accurate and precise in comparison to a Bertec 4060-NC force plate. The prototype device consisted of a sensorized insole, a belt-mounted microcontroller, and a linear array of four vibrotactile motors worn on the thigh. The prototype worked by calculating the center of pressure in the anteroposterior plane, and applying a time-discrete vibrotactile stimulus based on the location of the center of pressure.
ContributorsKaplan, Gabriel Benjamin (Author) / Abbas, James (Thesis director) / McDaniel, Troy (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05