Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 9 of 9
Filtering by

Clear all filters

148112-Thumbnail Image.png
Description

Animals encounter information from different resources simultaneously, integrating input from multiple sensory systems before responding behaviorally. When different cues interact with one another, they may enhance, diminish, or have no impact on their responses. In this project, we test how the presence of chemical cues affect the perception of visual

Animals encounter information from different resources simultaneously, integrating input from multiple sensory systems before responding behaviorally. When different cues interact with one another, they may enhance, diminish, or have no impact on their responses. In this project, we test how the presence of chemical cues affect the perception of visual cues. Zebrafish (Danio rerio) often use both chemical cues and visual cues to communicate with shoal mates, to assess predation risk, and to locate food. For example, zebrafish rely on both olfactory cues and visual cues for kin recognition, and they frequently use both chemical and visual cues to search for and to capture prey. In zebrafish, the terminal nerve (TN) constitutes the olfacto-visual centrifugal pathway and connects the olfactory bulb with the retina, thus allowing olfactory perception also to activate visual receptors. Past studies have found that the presence of an olfactory cue can modulate visual sensitivity in zebrafish through the terminal nerve pathway. Alternatively, given that zebrafish are highly social, the presence of social chemical cues may distract individuals from responding to other visual cues, such as food and predator visual cues. Foraging and predator chemical cues, including chemical food cues and alarm cues, may also distract individuals from responding to non-essential visual cues. Here, we test whether the response to a visual cue either increases or decreases when presented in concert with alanine, an amino acid that represents the olfactory cues of zebrafish prey. We found that the presence of chemical cues did not affect whether zebrafish responded to visual cues, but that the fish took longer to respond to visual cues when chemical cues were also present. These findings suggest that different aspects of behavior could be affected by the interaction between sensory modalities. We also found that this impact of delayed response was significant only when the visual cue<br/>was weak compared to the strength of the chemical cue, suggesting that the salience of interacting cues may also have an influence on determining the outcomes of the interactions. Overall, the interactive effects of chemicals on an animal’s response to visual cues may also have wide-ranging impacts on behavior including foraging, mating, and evading predators, and the interaction of cues may affect different aspects of the same behavior.

ContributorsPuffer, Georgie Delilah (Author) / Martins, Emilia (Thesis director) / Suriyampola, Piyumika (Committee member) / Gerkin, Richard (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147842-Thumbnail Image.png
Description

Motor learning is the process of improving task execution according to some measure of performance. This can be divided into skill learning, a model-free process, and adaptation, a model-based process. Prior studies have indicated that adaptation results from two complementary learning systems with parallel organization. This report attempted to answer

Motor learning is the process of improving task execution according to some measure of performance. This can be divided into skill learning, a model-free process, and adaptation, a model-based process. Prior studies have indicated that adaptation results from two complementary learning systems with parallel organization. This report attempted to answer the question of whether a similar interaction leads to savings, a model-free process that is described as faster relearning when experiencing something familiar. This was tested in a two-week reaching task conducted on a robotic arm capable of perturbing movements. The task was designed so that the two sessions differed in their history of errors. By measuring the change in the learning rate, the savings was determined at various points. The results showed that the history of errors successfully modulated savings. Thus, this supports the notion that the two complementary systems interact to develop savings. Additionally, this report was part of a larger study that will explore the organizational structure of the complementary systems as well as the neural basis of this motor learning.

ContributorsRuta, Michael (Author) / Santello, Marco (Thesis director) / Blais, Chris (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147559-Thumbnail Image.png
Description

Studies of animal contests often focus solely on a single static measurement of fighting ability, such as the size or the strength of the individual. However, recent studies have highlighted the importance of individual variation in the dynamic behaviors used during a fight, such as, assessment strategies, decision making, and

Studies of animal contests often focus solely on a single static measurement of fighting ability, such as the size or the strength of the individual. However, recent studies have highlighted the importance of individual variation in the dynamic behaviors used during a fight, such as, assessment strategies, decision making, and fine motor control, as being strong predictors of the outcome of aggression. Here, I combined morphological and behavioral data to discover how these features interact during aggressing interactions in male virile crayfish, Faxonius virilis. I predicted that individual variation in behavioral skill for decision making (i.e., number of strikes thrown), would determine the outcome of contest success in addition to morphological measurements (e.g. body size, relative claw size). To evaluate this prediction, I filmed staged territorial interactions between male F. virilis and later analyzed trial behaviors (e.g. strike, pinches, and bout time) and aggressive outcomes. I found very little support for skill to predict win/loss outcome in trials. Instead, I found that larger crayfish engaged in aggression for longer compared to smaller crayfish, but that larger crayfish did not engage in a greater number of claw strikes or pinches when controlling for encounter duration. Future studies should continue to investigate the role of skill, by using finer-scale techniques such as 3D tracking software, which could track advanced measurements (e.g. speed, angle, and movement efficiency). Such studies would provide a more comprehensive understanding of the relative influence of fighting skill technique on territorial contests.

ContributorsNguyen, Phillip Huy (Author) / Angilletta, Michael (Thesis director) / McGraw, Kevin (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148417-Thumbnail Image.png
Description

The purpose of this project was to research the expression of Autism Spectrum Disorder in children and create a children’s book that can help the peers of individuals with a diagnosis to understand what the disorder entails and potentially gain a new sense of empathy for peers of all levels

The purpose of this project was to research the expression of Autism Spectrum Disorder in children and create a children’s book that can help the peers of individuals with a diagnosis to understand what the disorder entails and potentially gain a new sense of empathy for peers of all levels of physical and mental abilities. The research component includes interviews with individuals deemed knowledgeable about ASD, including occupational therapists, behavioral analysts, and parents, as well as a literature review of research studies on the expression of Autism in children. This written portion of the project may also serve as a manual for individuals who have little to no knowledge of ASD, as it dives deeper into the content of the book and research, while remaining easily understandable and clear to those without any prior knowledge or experience with ASD. It could prove especially useful for those in professions that come into contact with individuals with Autism, but do not necessarily require psychology courses or training as a prerequisite for the role, such as teachers and some health professionals.

ContributorsSigna, Hope (Author) / Nelson, Elizabeth (Thesis director) / Spinrad, Tracy (Committee member) / Department of Psychology (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148453-Thumbnail Image.png
Description

Families of students with disabilities and those who are culturally and linguistically diverse (CLD), are looking for better educational opportunities. Charter schools offer promise as they were designed to promote student learning with limited control from the state. Charter schools though, have been criticized for relying on exclusionary discipline policies

Families of students with disabilities and those who are culturally and linguistically diverse (CLD), are looking for better educational opportunities. Charter schools offer promise as they were designed to promote student learning with limited control from the state. Charter schools though, have been criticized for relying on exclusionary discipline policies that affect CLD students and students with disabilities disproportionately. This study was designed to understand how Arizona charter schools use exclusionary discipline practices, with a focus on students with disabilities and CLD students. Two participants, a fourth grade and fifth grade teacher from a Phoenix metropolis charter school completed surveys and interviews where they answered questions about their classroom and their school’s discipline policies. Teachers were asked how they have adapted and administered classroom discipline policies and to what extent have positive behavioral strategies been implemented in an online setting due to the COVID-19 pandemic when schools transitioned to virtual learning. The results showed that in a virtual setting, teachers retained the practice of removing students from the “classroom”, expectations had to be modified to meet the needs of the new environment, and the school counselor served in conflicting roles. The findings suggested that charter schools and teachers may be transferring and adapting their reliance on exclusionary discipline practices even for an online setting with classrooms that have students with disabilities and those who are CLD.

ContributorsMendoza-Mada, Andres Francisco (Author) / Harris, Pamela (Thesis director) / Oakes, Wendy (Committee member) / Educational Leadership & Innovation, Division (Contributor) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131836-Thumbnail Image.png
Description
Realistically, everyone should either be in jail or in court for crimes that everybody
commits. Outside of the house, there are people speeding, jaywalking, littering, sharing
medication, and driving without seat belts. Inside the house, people are downloading
music/movies, drinking while underage, using (and abusing) social media while under the age of
18, and

Realistically, everyone should either be in jail or in court for crimes that everybody
commits. Outside of the house, there are people speeding, jaywalking, littering, sharing
medication, and driving without seat belts. Inside the house, people are downloading
music/movies, drinking while underage, using (and abusing) social media while under the age of
18, and reading another person’s mail. With so much of a focus on serious crimes, or felonies,
people tend to forget about the everyday actions in America that are also illegal. For example, a
police officer may not do anything if several cars are going well over the speed limit on the
highway, because it is normalized. This paper explores two sides of this issue: the psychological
side and the legal side. The goal is to find out how culpable people really are for their actions
when they do not have the mental intent that the they are determined to have in court. All human
behavior will be divided into two sections (people with non-extreme mental disorders and people
who have total control over their behavior). First, I dive into the complexity of anxiety,
depression, and ADHD, and explain how these disorders will subtly change someone’s behavior.
Next, I examine how actions like speeding and jaywalking and explain how certain illegal
actions have become so normalized that people may not be very guilty, even when they are
knowingly committing these crimes. I use different misdemeanors as examples for each of these
types of behaviors to argue why people should be more culpable (aggravating factors) or less
culpable (mitigating factors) because of their respective predispositions. Finally, I discuss issues
of fixing the criminal justice system such as: how to make all punishments fair/accurate, how to
fix the public’s distrust towards the law, and how to stop these normalized illegal behaviors for
all people, regardless of mental health or intent.
ContributorsHildebrand, David Abel (Author) / Rigoni, Adam (Thesis director) / Cavanaugh-Toft, Carolyn (Committee member) / School of Social Transformation (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132057-Thumbnail Image.png
Description
Introduction: There is currently a lack of industry-wide gold standardization in accelerometer study
protocols, including within sleep-focused studies. This study seeks to address accuracy of
accelerometer data in detection of the beginnings and ends of sleep bouts in young adults with
polysomnography (PSG) corroboration. An existing algorithm used to differentiate

Introduction: There is currently a lack of industry-wide gold standardization in accelerometer study
protocols, including within sleep-focused studies. This study seeks to address accuracy of
accelerometer data in detection of the beginnings and ends of sleep bouts in young adults with
polysomnography (PSG) corroboration. An existing algorithm used to differentiate valid/invalid wear
time and detect bouts of sleep has been modified with the goal of maximizing accuracy of sleep bout
detection. Methods: Three key decisions and thresholds of the algorithm have been modified with three
experimental values each being tested. The main experimental variable Sleepwindow controls the
amount of time before and after a determined bout of sleep that is searched for additional sedentary
time to incorporate and consider part of the same sleep bout. Results were compared to PSG and sleep
diary data for absolute agreement of sleep bout start time (START), end time (END) and time in bed
(TIB). Adjustments were made for outliers as well as sleep latency, snooze time, and the sum of both.
Results: Only adjustments made to a sleep window variable yielded altered results. Between a 5-, 15-,
and 30-minute window, a 15-minute window incurred the least error and most agreement to
comparisons for START, while a 5-minute window was best for END and TIB. Discussion: Contrary
to expectation, corrections for snooze, latency, and both did not substantially improve agreement to
PSG. Algorithm-derived estimates of START and END always fell after sleep diary and PSG both,
suggesting either participants’ sedentary behavior beginning and ends were at a delay from sleep and
wake times, or the algorithm estimates consistently later times than appropriate. The inclusion of a
sleep window variable yields substantial variety in results. A 15-minute window appears best at
determining START while a 5-minute window appears best for END and TIB. Further investigation on
the optimal window length per demographic and condition is required.
ContributorsMartin, Logan Rhett (Author) / Buman, Matthew (Thesis director) / Toledo, Meynard John (Committee member) / Kurka, Jonathan (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
131542-Thumbnail Image.png
Description
Stress activates physiological systems within the body to protect oneself against the potential harmful effects of enduring long-term stress. Past studies have shown that structures involved in timing are implicated in a number of psychological disorders and further are sensitive to stress. In this experiment, Sprague Dawley rats are trained

Stress activates physiological systems within the body to protect oneself against the potential harmful effects of enduring long-term stress. Past studies have shown that structures involved in timing are implicated in a number of psychological disorders and further are sensitive to stress. In this experiment, Sprague Dawley rats are trained to perform a perspective timing task and are then exposed to twice-daily chronic variable stress for 21 days. Behavioral data are collected, followed by post-mortem tissue analysis of the PFC, hippocampus, and striatum. This study aims to examine the morphological changes in key brain regions such as the hippocampus that appear to be involved in interval timing. Additionally, this study aims to confirm that dendritic complexity in the hippocampus produces consistent data using a classic Sholl analysis versus using a virtual image-stacking software, Neurostackr. The results of this study demonstrate that the expected Gaussian graph produced from a classic Sholl analysis was produced from both a long-shaft and short-shaft neuron found in the hippocampus using the virtual technology. These findings verify that a virtual image-stacking software and Sholl analysis will suffice in place of the traditional method of hand traced neurons on a transparent sheet with concentric circles to count bifurcation points. This virtual method ultimately reduces cost, improves timeliness of data collection, and eliminates some of the subjectivity of human error.
ContributorsGarcia, Jasmine Brooke (Author) / Sanabria, Federico (Thesis director) / Gupta, Tanya (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131267-Thumbnail Image.png
Description
Dementia is a collective term used to describe symptoms of cognitive impairment in learning and memory. The most prevalent form of dementia is Alzheimer’s disease (AD). In order to understand the pathological mechanisms associated with AD, animal models have been created. These various mouse models replicate the pathology found in

Dementia is a collective term used to describe symptoms of cognitive impairment in learning and memory. The most prevalent form of dementia is Alzheimer’s disease (AD). In order to understand the pathological mechanisms associated with AD, animal models have been created. These various mouse models replicate the pathology found in humans with AD. As a consequence of the fact that this disease impairs cognitive abilities in humans, testing apparatuses have been developed to measure impaired cognition in animal models. One of the most common behavioral apparatuses that has been in use for nearly 40 years is the Morris water maze (MWM). In the MWM, animals are tasked to find a hidden platform in a pool of water and thereby are subjected to stress that can unpredictably influence cognitive performance. In an attempt to circumvent such issues, the IntelliCage was designed to remove the external stress of the human experimenter and provide a social environment during task assessment which is fully automated and programable. Additionally, the motivation is water consumption, which is less stressful than escaping a pool. This study examined the difference in performance of male and female cohorts of APP/PS1 and non-transgenic (NonTg) mice in both the MWM and the IntelliCage. Initially, 12-month-old male and female APP/PS1 and NonTg mice were tested in the hippocampal-dependent MWM maze for five days. Next, animals were moved to the IntelliCage and underwent 39 days of testing to assess prefrontal cortical and hippocampal function. The results of this experiment showed significant sex differences in task performance, but inconsistency between the two testing paradigms. Notably, males performed significantly better in the MWM, which is consistent with prior research. Interestingly however, APP/PS1 females showed higher Amyloid-β plaque load and performed significantly better in the more complex tasks of the IntelliCage. This suggests that Aβ plaque load may not directly contribute to cognitive deficits, which is consistent with recent reports in humans with AD. Collectively, these results should inform scientists about the caveats of behavioral paradigms and will aid in determining translation to the human condition.
ContributorsMifflin, Marc Anthony (Author) / Velazquez, Ramon (Thesis director) / Mastroeni, Diego (Committee member) / School of Geographical Sciences and Urban Planning (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05