Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

Description

The 1970’s was an exciting time for those interested in avian navigation and magnetoreception. In the mid 1970’s, it had been scientifically proven that birds utilized the Earth’s magnetic fields as a means for orientation. However, while scientists now knew that birds could detect geomagnetic fields, a major question still

The 1970’s was an exciting time for those interested in avian navigation and magnetoreception. In the mid 1970’s, it had been scientifically proven that birds utilized the Earth’s magnetic fields as a means for orientation. However, while scientists now knew that birds could detect geomagnetic fields, a major question still remained: how? Several years later, physicist Klaus Schulten would bring the world much closer to an answer with the introduction of the radical pair model. With an extremely firm grasp of quantum mechanics, Schulten was able to make an amazing connection between the magnetically sensitive “radical pairs” and magnetic sensing in organisms (such as birds). The goal of this thesis is to explore this intersection of quantum mechanics and biology first illuminated by Schulten, through providing an in-depth explanation of the radical pair model itself, the quantum mechanical concepts that allow it to exist, the possible biological structures involved, and a small exploration of where the theory stands today, all to better understand the fascinating phenomenon of avian magnetoreception.

ContributorsFelix, Lia (Author) / Foy, Joseph (Thesis director) / Martin, Thomas (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor)
Created2022-05