Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

164759-Thumbnail Image.png
Description
I present a multi-spectral analysis of the faint, uJy, radio source population in the James Webb Space Telescope North Ecliptic Pole Time Domain Field. Very Long Baseline Array pointings at the 127 brightest of ~2500 radio galaxies identified with the Very Large Array indicate active galactic nucleus contamination of approximately

I present a multi-spectral analysis of the faint, uJy, radio source population in the James Webb Space Telescope North Ecliptic Pole Time Domain Field. Very Long Baseline Array pointings at the 127 brightest of ~2500 radio galaxies identified with the Very Large Array indicate active galactic nucleus contamination of approximately 9.45%. My estimates of 4.8 GHz brightness of this radio source population indicate an upper bound on this contamination of 10.6%. This is well within acceptable limits, in population studies, for the use of the radio-FIR relation in the JWST NEP TDF. This improves the utility of the field to the community by reducing the need for expensive FIR observations. I have also developed an extensive catalog of magnitudes and other data in visible bands of this population. My analysis in these bands does not give any conclusive criteria for distinguishing between AGN and SFGs. The strongest trends I do identify appear to be due to reddening by interstellar dust. Future follow-up will focus on characterizing individual sources in further depth.
ContributorsNolan, Liam (Author) / Jansen, Rolf (Thesis director) / Windhorst, Rogier (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Earth and Space Exploration (Contributor) / Department of Physics (Contributor)
Created2022-05