Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

131751-Thumbnail Image.png
Description
Fermentation and humanity have a very long intertwined history, neither would exist without the other. Fermenting food preserves it so it can survive long beyond its normal shelf life by maintaining an environment that promotes the survival of healthy bacteria and not dangerous ones. Recently, largely thanks to the

Fermentation and humanity have a very long intertwined history, neither would exist without the other. Fermenting food preserves it so it can survive long beyond its normal shelf life by maintaining an environment that promotes the survival of healthy bacteria and not dangerous ones. Recently, largely thanks to the dawn of social media and the internet, the notion that eating healthily is important has once again come around. Kombucha has taken advantage of this revolution by promoting good tasting probiotics that are easily consumed and incorporated into day to day life. Sauerkraut and other fermented vegetables have not caught on because they are not presented in an easy to use format, there is no variety of flavoring, and consumers have no idea how to start eating it in their daily diet. This is the whole in the market that Fermentation Station is filling.
Normally, sauerkraut is only sold in very large containers that are intimidating to the average consumer. Fermentation Station will solve this issue by selling sauerkraut in small serving size containers or slightly bigger containers for a week long supply. Additionally, Fermentation Station will sell multiple different flavors of sauerkraut. This is necessary to intrigue a younger audience who desires variety and choice
The other place where sauerkraut falls short is that people are unaware of how to incorporate into their day to day meals. To solve this the company social media team has been growing its following on several platforms. By providing easy recipes through these platforms, consumers can see how they too can easily start eating more sauerkraut without actually altering their diet much. To augment the creator, Ryan Conley’s talents, two additional team members were brought on to help with branding and marketing, mostly on social media.
ContributorsConley, Ryan Christopher (Author) / Sebold, Brent (Thesis director) / Schoepf, Jared (Committee member) / School of International Letters and Cultures (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description

Aminoglycosides contain a basic unit of an amino-modified glycoside (sugar) and have potent antibacterial properties used to treat a wide range of bacterial infections, including those that occur in the soft tissue, chest, urinary tract, and endocardial tissue.1, 2 With a broad spectrum of activity and convenient dosing schedule, Aminoglycoside

Aminoglycosides contain a basic unit of an amino-modified glycoside (sugar) and have potent antibacterial properties used to treat a wide range of bacterial infections, including those that occur in the soft tissue, chest, urinary tract, and endocardial tissue.1, 2 With a broad spectrum of activity and convenient dosing schedule, Aminoglycoside helps to effectively fight off Gram-negative bacteria.1, 3 In 1944 an aminoglycoside called streptomycin entered clinical trials to test its effectiveness as an antibiotic.4 After several years other classes of aminoglycosides were discovered such as neomycin, gentamicin, kanamycin, and netilmicin.4 When introduced these antibiotics presented major clinical advancements in the treatment of Tuberculosis and other bacterial infections.3, 4 However their use in modern medicine has diminished due to their toxicity, required parenteral delivery, and the availability of alternative antibiotics.3, 5 The dose-dependent toxicity of aminoglycosides limits their use due to a narrow range of safe aminoglycoside plasma concentrations.3, 5 Exceeding this range in non-target tissues can lead to negative effects on the audio-vestibular apparatus and kidneys.3, 5, 6 In the 1980’s, clinicians began treating infections with antibiotics that were perceived as less toxic and providing broader antibacterial activity.7 This resulted in aminoglycosides being prescribed for more persistent infections that were resistant to other antibiotics.3 With the amount of antibiotic resistant bacteria increasing, many scientists have begun looking into methods for minimizing aminoglycoside toxicity and maximizing its antibacterial activity.3, 8 These methods include encapsulation and polymer conjugation.9, 10 By encapsulating aminoglycosides in liposomes or other vesicles scientists aim to increase its concentration in infected tissues while decreasing nephro- and ototoxicity.9 With conjugated polymers scientists have created polymer complexes containing aminoglycosides and other compounds such as dopamine.11 The goal of these polymers is to limit toxicity by slowing antibiotic release and increasing efficacy of the antibiotic through targeted delivery and toxicity of other compounds.9, 10, 11 Other than its use in treating infections, aminoglycosides are gaining attention as an excellent vehicle for gene delivery.12 In this application aminoglycosides are used to correct a genetic defect by introducing a normal copy of the gene into affected cells.12,13 Currently scientists are assessing aminoglycosides for gene therapy in the treatment of cancer and various other diseases.12, 14 This review will focus on the diverse customizability of aminoglycosides in treating infections and as vehicles for gene therapy.

ContributorsWampler, Cole (Author) / Rege, Kaushal (Thesis director) / Schoepf, Jared (Committee member) / Barrett, The Honors College (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Chemical Engineering Program (Contributor) / School of Life Sciences (Contributor)
Created2023-05