Student capstone and applied projects from ASU's School of Sustainability.

Displaying 1 - 4 of 4
Filtering by

Clear all filters

Description
In Senegal, West Africa, soils are a vital resource for livelihoods and food security in smallholder farming communities. Low nitrogen (N) soils pose obvious challenges for crop production but may also, counterintuitively, promote the abundance of agricultural pests like the Senegalese locust, Oedaleus senegalensis. In this study I investigated how

In Senegal, West Africa, soils are a vital resource for livelihoods and food security in smallholder farming communities. Low nitrogen (N) soils pose obvious challenges for crop production but may also, counterintuitively, promote the abundance of agricultural pests like the Senegalese locust, Oedaleus senegalensis. In this study I investigated how the abundance of locusts and grasshoppers are impacted by soil fertility through plant nutrients and how these variables change across land use types. We worked in two rural farming villages in the Kaffrine region of Senegal. Overall, there was little variation in soil properties and an agricultural landscape low in soil organic matter (SOM) and inorganic soil nitrogen. I corroborated that SOM is a significant driver of soil inorganic N, which had a positive relationship to plant N content. Of the management practices we surveyed, fallowing fields was important for soil nutrient restoration and years spent fallow was significantly correlated to inorganic soil N and SOM. O. senegalensis was least abundant in groundnut areas where plant N was highest. Additionally, I found a significant negative correlation between O. senegalensis abundance and plant N, suggesting that plant nutrients are an important driver of their populations. Grasshoppers, excluding O. senegalensis, were more numerous in grazing areas and fallow areas, perhaps due to a higher diversity of ecological niches and host plants. These results connect land use, soil, and vegetation to herbivores and suggest that improving soil fertility could be used as an alternative to pesticides to keep locusts at bay and improve crop yields.
ContributorsWord, Mira (Author) / Hall, Sharon (Contributor) / Robinson, Brian (Contributor) / Manneh, Balanding (Contributor) / Beye, Alioune (Contributor) / Cease, Arianne (Contributor)
Created2018-04-10
Description

ASU’s waste diversion goal is 90% by the fiscal year 2025 and will require collaboration across many departments and programs to be successful. Reducing plastic use, especially single-use plastic, is critical in reaching 90% waste diversion in the supply chain. To reduce supply chain single-use plastics, ASU will need the

ASU’s waste diversion goal is 90% by the fiscal year 2025 and will require collaboration across many departments and programs to be successful. Reducing plastic use, especially single-use plastic, is critical in reaching 90% waste diversion in the supply chain. To reduce supply chain single-use plastics, ASU will need the cooperation of suppliers on efforts like piloting plastic free packaging programs, packaging take back programs, alternative packaging opportunities, or promoting alternative products that contain little-to-no single-use plastic. Creating a proposed approach through identifying strategic external partners, a high-level approach to implementation, and obstacles will impact how future goals and policies are set. Determining impact and added value of the project will help cultivate support from leadership, internal stakeholders, and suppliers. The project focus will include multiple deliverables, but the final output will be a timeline that maps out what plastic streams to eliminate and when to help ASU reach their waste diversion goals. It begins with “low-hanging fruit” like straws and plastic bags and ends with a university free from all non-essential single-use plastic.

ContributorsHarper, Trevor (Author) / Hegde, Sakshi (Author) / McCrossan, Nico (Author) / Knaggs, Cecilia (Author) / Pyne, Chloe (Author) / School of Sustainability (Contributor)
Created2022-05
166145-Thumbnail Image.png
Description

ASU’s waste diversion goal is 90% by the fiscal year 2025 and will require collaboration across many departments and programs to be successful. Reducing plastic use, especially single-use plastic, is critical in reaching 90% waste diversion in the supply chain. To reduce supply chain single-use plastics, ASU will need the

ASU’s waste diversion goal is 90% by the fiscal year 2025 and will require collaboration across many departments and programs to be successful. Reducing plastic use, especially single-use plastic, is critical in reaching 90% waste diversion in the supply chain. To reduce supply chain single-use plastics, ASU will need the cooperation of suppliers on efforts like piloting plastic free packaging programs, packaging take back programs, alternative packaging opportunities, or promoting alternative products that contain little-to-no single-use plastic. Creating a proposed approach through identifying strategic external partners, a high-level approach to implementation, and obstacles will impact how future goals and policies are set. Determining impact and added value of the project will help cultivate support from leadership, internal stakeholders, and suppliers. The project focus will include multiple deliverables, but the final output will be a timeline that maps out what plastic streams to eliminate and when to help ASU reach their waste diversion goals. It begins with “low-hanging fruit” like straws and plastic bags and ends with a university free from all non-essential single-use plastic.

ContributorsHarper, Trevor (Author) / Hegde, Sakshi (Author) / Knaggs, Cecilia (Author) / McCrossan, Nico (Author) / Pyne, Chloe (Author) / School of Sustainability (Contributor)
Created2022-05
166147-Thumbnail Image.png
Description

ASU’s waste diversion goal is 90% by the fiscal year 2025 and will require collaboration across many departments and programs to be successful. Reducing plastic use, especially single-use plastic, is critical in reaching 90% waste diversion in the supply chain. To reduce supply chain single-use plastics, ASU will need the

ASU’s waste diversion goal is 90% by the fiscal year 2025 and will require collaboration across many departments and programs to be successful. Reducing plastic use, especially single-use plastic, is critical in reaching 90% waste diversion in the supply chain. To reduce supply chain single-use plastics, ASU will need the cooperation of suppliers on efforts like piloting plastic free packaging programs, packaging take back programs, alternative packaging opportunities, or promoting alternative products that contain little-to-no single-use plastic. Creating a proposed approach through identifying strategic external partners, a high-level approach to implementation, and obstacles will impact how future goals and policies are set. Determining impact and added value of the project will help cultivate support from leadership, internal stakeholders, and suppliers. The project focus will include multiple deliverables, but the final output will be a timeline that maps out what plastic streams to eliminate and when to help ASU reach their waste diversion goals. It begins with “low-hanging fruit” like straws and plastic bags and ends with a university free from all non-essential single-use plastic.

ContributorsHarper, Trevor (Author) / Hegde, Sakshi (Author) / McCrossan, Nico (Author) / Knaggs, Cecilia (Author) / Pyne, Chloe (Author) / School of Sustainability (Contributor)
Created2022-05