Student capstone and applied projects from ASU's School of Sustainability.

Displaying 1 - 6 of 6
Filtering by

Clear all filters

Description
The Arizona State University (ASU) Masters of Sustainability Solutions (MSUS) program connects student teams with real-world clients to solve real-world sustainability problems as a part of the students’ Culminating Experience in the program. This report details the project assigned to our group, the Emissions Data Detectives (EDD), in partnership with

The Arizona State University (ASU) Masters of Sustainability Solutions (MSUS) program connects student teams with real-world clients to solve real-world sustainability problems as a part of the students’ Culminating Experience in the program. This report details the project assigned to our group, the Emissions Data Detectives (EDD), in partnership with our client, Gannett Fleming. This project focuses on calculating greenhouse gas (GHG) emissions from the client’s leased office spaces across the United States and Canada. In excess, GHGs trap heat in the atmosphere, negatively affecting global air quality and human health. In addition, top companies similar to our client are already disclosing their emissions, new legislation is aiming to require such reporting, and stakeholders are trending to gravitate towards firms measuring and reducing their environmental impact. During the first semester of this project, we noticed that Gannett Fleming lacked data on specific utility usage in their leased office spaces, as not all data is shared, standardized, or robust enough for accurate emissions calculations. After conducting a landscape analysis where group members interviewed companies facing a similar problem, the team identified best practices for addressing this issue. Such practices included using mixed methods for calculations based on data availability, leveraging organizational connections for efficient communication with landlords, creating custom communication plans, and using concise language with landlords. The team also conducted an sTOWS analysis to understand better how our research could best be applied to Gannett Fleming’s problem. From there, we developed a project plan that included an Invitation to Participate and Data Request to collect the necessary data. Next, the team outlined strategies for emissions calculations, including applying calculations from the GHG Protocol and compiling all calculations in a navigable spreadsheet. Greenhouse gas calculations were made using a mix of asset-specific data from the Data Request forms and average data from the EPA estimates using equations from Scope 3, Category 8, or Leased Upstream Assets per the Greenhouse Gas Protocol. Emissions were categorized under Scope 3 since the client has no control over the leased offices, and the control approach was used. Final results showed that the emissions calculated for the 8 offices where asset-specific data was used combined with the 31 offices where average data was used totaled 2,390 metric tonnes of CO2e for FY2022. In order to ensure that this project can be helpful to Gannet Fleming long-term, we came up with three main deliverables including a GHG spreadsheet including all calculations and findings, a GHG roadmap with simplified step-by-step instructions of our methodology, and a Sustainable Leasing Policy information to ensure the client’s emissions reduction goals are communicated and considered in the decision-making process for future lease agreements. This version contains results that have been edited to ensure client confidentiality. Offices have been anonymized, and numbers used are not representative of actual emissions findings.
ContributorsGutierrez, Lukas (Author) / Carlson, Chloe (Author) / Davitt, Akilah (Author) / Cobb, James (Author)
Created2023-04-24
126697-Thumbnail Image.png
Description
"Community and Composting in Victory Acres” implemented a pilot composting program for a local neighborhood in an effort to increase community cohesion. Victory Acres is a low-income, culturally diverse neighborhood located in Tempe that used to have easier access to the Escalante Community Center before the 101 freeway divided the

"Community and Composting in Victory Acres” implemented a pilot composting program for a local neighborhood in an effort to increase community cohesion. Victory Acres is a low-income, culturally diverse neighborhood located in Tempe that used to have easier access to the Escalante Community Center before the 101 freeway divided the community. Residents of the neighborhoods surrounding ECC do not have access to the Escalante Community Garden except on Community Harvest Days twice a month. The goal of the project was to reconnect broken ties to the ECG through a neighborhood composting service. Through composting, residents could directly benefit from the community garden’s composting capabilities while encouraging a more sustainable method for dealing with food waste. The composting pilot project in Victory Acres was used as a way to mitigate the greenhouse gases emanating from food waste along with other neighborhood issues. The project would encourage aspects of community cohesion, sustainability, and happiness. By the completion of the project, composting in the neighborhood could continue through increased access to the Escalante Community Center Garden. An assessment via survey responses was made on improvements in perceived community connectedness, sustainability, and happiness. The pilot was unsuccessful in gaining a large client base for composting participation, but it was successful in exploring challenges and barriers to implementation of projects in Victory Acres. Several intervention points were explored, several lessons were learned from successful and unsuccessful engagement techniques, and opportunities arose for further future research.
ContributorsKiefer, Alyssa (Author) / Cloutier, Scott (Contributor) / Prosser, Paul (Contributor)
Created2017-04-28
126696-Thumbnail Image.png
Description
Greenhouse gas (GHG) emissions cause climate change, and if the world does not lower its GHG emissions soon, it will cause irreversible damage that will have overwhelmingly negative cascading effects on the entire planet (Mann & Kump, 2008). Up to 47% of the United States GHG emissions are the result

Greenhouse gas (GHG) emissions cause climate change, and if the world does not lower its GHG emissions soon, it will cause irreversible damage that will have overwhelmingly negative cascading effects on the entire planet (Mann & Kump, 2008). Up to 47% of the United States GHG emissions are the result of energy used to produce, process, transport, and dispose of the food we eat and the goods that we consume (US EPA, 2009). The linear-economy status quo does nothing to slow down climate change because it puts resources into landfills. This project promotes a circular economy which combats climate change by reusing resources that are at the end of their life cycle, e.g., food waste soil. The project was a month-long compost competition at an apartment building in Phoenix, AZ that houses 194 residents. The apartment building, Urban Living 2 (UL2), is subsidized housing owned by Native American Connections (NAC), a non-profit organization. The project’s main objective was to increase waste diversion. This was done through composting and improving zero-waste capacity. The compost competition included activities to change community behavior such as private and public commitments, a community barbecue, a movie night (which replaced a planned field trip), and a visioning meeting. By the end of the project, 22% of the tenants were composting. Over a year-long period, this equates to a diversion of, 6000 pounds from the landfill and 1.59 metric tons of Carbon Dioxide equivalent (MTCO2E). The waste diversion increased from 28% to 38%. Tenant participation trended upwards during the project and as the social norm develops over time, more tenant participation is expected even after the competition is over. The six indicators that were used to determine the zero-waste capacity, collectively went up by 1.24 points on a five-point scale. This project will be used as a model for NAC for its other 16 properties in the Valley.
ContributorsVelez, Daniel (Author)
Created2017-04-10