Student capstone and applied projects from ASU's School of Sustainability.

Displaying 1 - 9 of 9
Filtering by

Clear all filters

Description
The Arizona State University (ASU) Masters of Sustainability Solutions (MSUS) program connects student teams with real-world clients to solve real-world sustainability problems as a part of the students’ Culminating Experience in the program. This report details the project assigned to our group, the Emissions Data Detectives (EDD), in partnership with

The Arizona State University (ASU) Masters of Sustainability Solutions (MSUS) program connects student teams with real-world clients to solve real-world sustainability problems as a part of the students’ Culminating Experience in the program. This report details the project assigned to our group, the Emissions Data Detectives (EDD), in partnership with our client, Gannett Fleming. This project focuses on calculating greenhouse gas (GHG) emissions from the client’s leased office spaces across the United States and Canada. In excess, GHGs trap heat in the atmosphere, negatively affecting global air quality and human health. In addition, top companies similar to our client are already disclosing their emissions, new legislation is aiming to require such reporting, and stakeholders are trending to gravitate towards firms measuring and reducing their environmental impact. During the first semester of this project, we noticed that Gannett Fleming lacked data on specific utility usage in their leased office spaces, as not all data is shared, standardized, or robust enough for accurate emissions calculations. After conducting a landscape analysis where group members interviewed companies facing a similar problem, the team identified best practices for addressing this issue. Such practices included using mixed methods for calculations based on data availability, leveraging organizational connections for efficient communication with landlords, creating custom communication plans, and using concise language with landlords. The team also conducted an sTOWS analysis to understand better how our research could best be applied to Gannett Fleming’s problem. From there, we developed a project plan that included an Invitation to Participate and Data Request to collect the necessary data. Next, the team outlined strategies for emissions calculations, including applying calculations from the GHG Protocol and compiling all calculations in a navigable spreadsheet. Greenhouse gas calculations were made using a mix of asset-specific data from the Data Request forms and average data from the EPA estimates using equations from Scope 3, Category 8, or Leased Upstream Assets per the Greenhouse Gas Protocol. Emissions were categorized under Scope 3 since the client has no control over the leased offices, and the control approach was used. Final results showed that the emissions calculated for the 8 offices where asset-specific data was used combined with the 31 offices where average data was used totaled 2,390 metric tonnes of CO2e for FY2022. In order to ensure that this project can be helpful to Gannet Fleming long-term, we came up with three main deliverables including a GHG spreadsheet including all calculations and findings, a GHG roadmap with simplified step-by-step instructions of our methodology, and a Sustainable Leasing Policy information to ensure the client’s emissions reduction goals are communicated and considered in the decision-making process for future lease agreements. This version contains results that have been edited to ensure client confidentiality. Offices have been anonymized, and numbers used are not representative of actual emissions findings.
ContributorsGutierrez, Lukas (Author) / Carlson, Chloe (Author) / Davitt, Akilah (Author) / Cobb, James (Author)
Created2023-04-24
Description
In northern Arizona, the removal of woody biomass from forested land has garnered a high level of interest as threats of catastrophic wildfires have increased in recent years. Although there has been a great deal of vocal support for forest restoration, efforts on the ground are often stalled by complex

In northern Arizona, the removal of woody biomass from forested land has garnered a high level of interest as threats of catastrophic wildfires have increased in recent years. Although there has been a great deal of vocal support for forest restoration, efforts on the ground are often stalled by complex federal contracting systems, a weak logging and sawmill industry, low-quality timber, and inabilities to guarantee long-term biomass supplies to processers. These barriers are exceedingly apparent in in the Flagstaff area, where the vast majority of forested land falls under the jurisdiction of the federal government and little infrastructure exists for wood product industries. In order to address these obstacles, forest stakeholders in Coconino County are actively searching for enterprises to utilize material that urgently needs to be removed from the surrounding forests. This project aimed to assist stakeholders in this endeavor by identifying and researching a number of practical and innovative woody biomass utilization enterprises that are suited to the existing regional infrastructure. While there are a variety of ways to process biomass, this project focuses on the following four end products because of their ability to use residual materials from harvest and sawmill operations, their low-tech nature, and the end product’s proximity to potential markets: biochar, compost, wood-plastic composites, and mushroom cultivation. Each of these products, and the processes used to create them, were analyzed and evaluated using a sustainable enterprise framework, and the final results were summarized in a portfolio for stakeholders in the region to review. Although this project offered just a glimpse of what is possible, the ultimate aim was to foster collaborative conversations regarding how forest restoration residues can be used in sustainable and innovative ways.
ContributorsPaulus, Caitlin (Contributor)
Created2019-05-15
Description

Domestic energy is an important component of our day to day lives and is something we cannot live without. Imagine how life would be without a means to cook our food, to warm our house, life would be unbearable. As we enjoy these comforts rarely do we stop to think

Domestic energy is an important component of our day to day lives and is something we cannot live without. Imagine how life would be without a means to cook our food, to warm our house, life would be unbearable. As we enjoy these comforts rarely do we stop to think what the opportunity cost is. For those using renewable sources, it is not a big issue, but for those who rely on wood fuel, they have to strike a delicate balance between need for fuel and the need to conserve the greatest support systems of their livelihoods, the forests. The main source of energy for households in many developing countries is biomass, mainly from forests and woodlands. The continued use of firewood and charcoal fuel puts a strain on forests, resulting in adverse effects on the environment such as prolonged droughts, loss of biodiversity, dwindling water resources, changing weather patterns among other sustainability challenges. An alternative to firewood to charcoal lies in biochar briquettes. This paper discusses the role of biochar briquettes in mitigating climate change and serves as a step by step guide on how biochar briquettes may be produced.

ContributorsNganga, Patrick M. (Author)
Created2018
Description
These documents were developed as part of the culminating experience project for the Masters of Sustainability Solutions (MSUS) graduate program. This report was developed for the ASU Foundation and the Fulton Center by Team Green Impact with the goal of establishing a facility based year for the foundation to meet their

These documents were developed as part of the culminating experience project for the Masters of Sustainability Solutions (MSUS) graduate program. This report was developed for the ASU Foundation and the Fulton Center by Team Green Impact with the goal of establishing a facility based year for the foundation to meet their 2035 net-zero target. Contents of this report include: Scope 1 and Scope 2 GHG emission measurements for the Fulton Center, GHG emission reduction recommendations, an infographic for internal stakeholder engagement, and an example net-zero strategy the foundation can utilize in their current and future building. The purpose of the report and the infographic is to inform next steps for reducing GHG emissions and to help the ASU Foundation make progress towards their net-zero target.
ContributorsFowler, Carissa (Author) / Boss, Lauren (Author) / Austin, Lesley (Author)
Created2023-05-01
188807-Thumbnail Image.png
ContributorsFowler, Carissa (Author) / Boss, Lauren (Author) / Austin, Lesley (Author)
Created2023-05-01
188808-Thumbnail Image.png
ContributorsFowler, Carissa (Author) / Boss, Lauren (Author) / Austin, Lesley (Author)
Created2023-05-01