Student capstone and applied projects from ASU's School of Sustainability.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

Description
Before the rise in renewable energy, few people considered the consequences of adding large amounts of intermittent power onto the grid. As renewable energy has become more prevalent, utility companies must adapt their business practices to accommodate these unique sources of power. This is leading to challenges on how best

Before the rise in renewable energy, few people considered the consequences of adding large amounts of intermittent power onto the grid. As renewable energy has become more prevalent, utility companies must adapt their business practices to accommodate these unique sources of power. This is leading to challenges on how best to manage a grid with large amounts of renewable power. Arizona Public Service (APS), the largest electricity provider in the state of Arizona, has more than 70,000 distributed solar customers on their grid and the number of solar customers increases every day. With this increase in distributed solar customers comes the solar duck curve—the phenomenon whereby solar produces energy during times of low demand. However, with the use of storage, the duck curve problem may be mitigated. This project examines the sustainability of three storage options: pumped hydro energy storage, compressed air energy storage, and lithium-ion batteries. Using several sustainability indicators, this project makes a policy recommendation to APS on the most sustainable choice for large-scale energy storage. This project found that compressed air energy storage was the most sustainable option for APS. This considered the impacts of compressed air on the environment, communities, and the costs of this storage option. One important aspect to acknowledge regarding this technology is that in its current form, it does emit some carbon emissions. However, the carbon emissions may have less of an impact if this storage facility can allow APS to use its renewable energy assets most efficiently and continue to use energy from Palo Verde, the nuclear facility in Arizona.
ContributorsRood, Devon (Author) / Romito, Marc (Contributor)
Created2018-04-25
Description
This document contains a feasibility study that explores the necessity, collaborations, and
possible methods of installing a 1 megawatt lithium-ion battery storage facility at San Diego Gas
& Electric’s Century Park campus located in the Kearny Mesa neighborhood in central San
Diego, California. The battery will serve purposes of adding renewable energy to

This document contains a feasibility study that explores the necessity, collaborations, and
possible methods of installing a 1 megawatt lithium-ion battery storage facility at San Diego Gas
& Electric’s Century Park campus located in the Kearny Mesa neighborhood in central San
Diego, California. The battery will serve purposes of adding renewable energy to the energy mix,
reducing operations costs via peak shaving, an educational component for the region, and
meeting stringent State of California and California Public Utilities Commission mandates for
both renewable energy and battery storage capacity.
ContributorsShamblin, Sandra M. (Writer of accompanying material)
Created2020-05-15
126620-Thumbnail Image.png
Description
Description
By avoiding vehicle idling for three minutes every day of the year can reduce 1.4 million metric tons annually, which is equivalent to taking 320,000 cars off the road for the entire year (Canada.ca, 2016). The Automobile Idle Reduction Program (AIRP) is an outreach initiative to prevent carbon emissions from

Description
By avoiding vehicle idling for three minutes every day of the year can reduce 1.4 million metric tons annually, which is equivalent to taking 320,000 cars off the road for the entire year (Canada.ca, 2016). The Automobile Idle Reduction Program (AIRP) is an outreach initiative to prevent carbon emissions from being released into the air by automobiles idling in Maricopa County. The initiative establishes a campaign to promote behavioral changes that target high idling industries: freight and delivery, schools and drive- thru facilities.

Background
Globally, carbon emissions negatively alter the air we breathe and is a leading cause in climate change. These problems adversely affect the global environment and human health. Additionally, they have cancer causing agents in the particulate matter. Unfortunately, over the years, Maricopa County has failed to meet air quality standards for particulate matter pollution which effects the health of residents. By not meeting the air quality standards, Maricopa County can receive sanctions and the Environmental Protection Agency can reject Arizona’s State Implementation Plan. This looming threat can financially impinge the economy of Maricopa County, potentially costing taxpayers a substantial increase in taxes.

Strategy and Solution
To battle the creation of carbon emissions and particulate matter, AIRP has developed a strategy for each industry. In partnership with the Maricopa County Air Quality Department, AIRP will introduce the freight and delivery companies to the Diesel Emission Reduction Act (DERA) Grant promotion to facilitate and fiscally assist with changing older diesel engines into higher efficiency engines that burn cleaner. Provide educators a fifth to eighth grade state approved education program to teach students the importance of vehicle idling reduction at no cost. And work with community organizations to offer a discount at their stores for those patrons who choose to turn their engine off and order inside, rather than idling in the drive-thru facilities. The campaign will market the interest of AIRP to the general public through purposefully placed billboards, light rail wraps, social media pushes, handouts and vinyl stickers.
ContributorsWeston-Smith, Kristen (Writer of accompanying material)
Created2020-05-13