Student capstone and applied projects from ASU's School of Sustainability.

Displaying 1 - 10 of 10
Filtering by

Clear all filters

Description
The Arizona State University (ASU) Masters of Sustainability Solutions (MSUS) program connects student teams with real-world clients to solve real-world sustainability problems as a part of the students’ Culminating Experience in the program. This report details the project assigned to our group, the Emissions Data Detectives (EDD), in partnership with

The Arizona State University (ASU) Masters of Sustainability Solutions (MSUS) program connects student teams with real-world clients to solve real-world sustainability problems as a part of the students’ Culminating Experience in the program. This report details the project assigned to our group, the Emissions Data Detectives (EDD), in partnership with our client, Gannett Fleming. This project focuses on calculating greenhouse gas (GHG) emissions from the client’s leased office spaces across the United States and Canada. In excess, GHGs trap heat in the atmosphere, negatively affecting global air quality and human health. In addition, top companies similar to our client are already disclosing their emissions, new legislation is aiming to require such reporting, and stakeholders are trending to gravitate towards firms measuring and reducing their environmental impact. During the first semester of this project, we noticed that Gannett Fleming lacked data on specific utility usage in their leased office spaces, as not all data is shared, standardized, or robust enough for accurate emissions calculations. After conducting a landscape analysis where group members interviewed companies facing a similar problem, the team identified best practices for addressing this issue. Such practices included using mixed methods for calculations based on data availability, leveraging organizational connections for efficient communication with landlords, creating custom communication plans, and using concise language with landlords. The team also conducted an sTOWS analysis to understand better how our research could best be applied to Gannett Fleming’s problem. From there, we developed a project plan that included an Invitation to Participate and Data Request to collect the necessary data. Next, the team outlined strategies for emissions calculations, including applying calculations from the GHG Protocol and compiling all calculations in a navigable spreadsheet. Greenhouse gas calculations were made using a mix of asset-specific data from the Data Request forms and average data from the EPA estimates using equations from Scope 3, Category 8, or Leased Upstream Assets per the Greenhouse Gas Protocol. Emissions were categorized under Scope 3 since the client has no control over the leased offices, and the control approach was used. Final results showed that the emissions calculated for the 8 offices where asset-specific data was used combined with the 31 offices where average data was used totaled 2,390 metric tonnes of CO2e for FY2022. In order to ensure that this project can be helpful to Gannet Fleming long-term, we came up with three main deliverables including a GHG spreadsheet including all calculations and findings, a GHG roadmap with simplified step-by-step instructions of our methodology, and a Sustainable Leasing Policy information to ensure the client’s emissions reduction goals are communicated and considered in the decision-making process for future lease agreements. This version contains results that have been edited to ensure client confidentiality. Offices have been anonymized, and numbers used are not representative of actual emissions findings.
ContributorsGutierrez, Lukas (Author) / Carlson, Chloe (Author) / Davitt, Akilah (Author) / Cobb, James (Author)
Created2023-04-24
Description
Before the rise in renewable energy, few people considered the consequences of adding large amounts of intermittent power onto the grid. As renewable energy has become more prevalent, utility companies must adapt their business practices to accommodate these unique sources of power. This is leading to challenges on how best

Before the rise in renewable energy, few people considered the consequences of adding large amounts of intermittent power onto the grid. As renewable energy has become more prevalent, utility companies must adapt their business practices to accommodate these unique sources of power. This is leading to challenges on how best to manage a grid with large amounts of renewable power. Arizona Public Service (APS), the largest electricity provider in the state of Arizona, has more than 70,000 distributed solar customers on their grid and the number of solar customers increases every day. With this increase in distributed solar customers comes the solar duck curve—the phenomenon whereby solar produces energy during times of low demand. However, with the use of storage, the duck curve problem may be mitigated. This project examines the sustainability of three storage options: pumped hydro energy storage, compressed air energy storage, and lithium-ion batteries. Using several sustainability indicators, this project makes a policy recommendation to APS on the most sustainable choice for large-scale energy storage. This project found that compressed air energy storage was the most sustainable option for APS. This considered the impacts of compressed air on the environment, communities, and the costs of this storage option. One important aspect to acknowledge regarding this technology is that in its current form, it does emit some carbon emissions. However, the carbon emissions may have less of an impact if this storage facility can allow APS to use its renewable energy assets most efficiently and continue to use energy from Palo Verde, the nuclear facility in Arizona.
ContributorsRood, Devon (Author) / Romito, Marc (Contributor)
Created2018-04-25
Description
This document contains a feasibility study that explores the necessity, collaborations, and
possible methods of installing a 1 megawatt lithium-ion battery storage facility at San Diego Gas
& Electric’s Century Park campus located in the Kearny Mesa neighborhood in central San
Diego, California. The battery will serve purposes of adding renewable energy to

This document contains a feasibility study that explores the necessity, collaborations, and
possible methods of installing a 1 megawatt lithium-ion battery storage facility at San Diego Gas
& Electric’s Century Park campus located in the Kearny Mesa neighborhood in central San
Diego, California. The battery will serve purposes of adding renewable energy to the energy mix,
reducing operations costs via peak shaving, an educational component for the region, and
meeting stringent State of California and California Public Utilities Commission mandates for
both renewable energy and battery storage capacity.
ContributorsShamblin, Sandra M. (Writer of accompanying material)
Created2020-05-15
Description

COVID-19 brought so much uncertainty into the world and has molded this project into what it is today. The first project journey that was chosen was meant to show the impact of how much plastic waste was being produced at Starbucks. Then due to COVID-19 yet again, it changed into

COVID-19 brought so much uncertainty into the world and has molded this project into what it is today. The first project journey that was chosen was meant to show the impact of how much plastic waste was being produced at Starbucks. Then due to COVID-19 yet again, it changed into how much paper waste there was within the State of Washington Department of Licensing (DOL) Business and Professions Division (BPD). DOL BPD is a state agency division that licenses over forty plus professional and business licenses to the residents of Washington state. Due to the pandemic, the project transformed into how the three pillars of sustainability impacts remote work within BPD. BPD is in this new and unique paradigm where the deliverable that was brought forth as this project completed are, “The 9 Benefits of Sustainability through Remote Work” (Appendix D) where this specifically showed DOL why remote work is sustainable and how it should be implemented even further throughout the agency. This list was put together with the benefits that best fit DOL BPD.

ContributorsReynolds, Jordan (Writer of accompanying material)
Created2021-02-11
Description
These documents were developed as part of the culminating experience project for the Masters of Sustainability Solutions (MSUS) graduate program. This report was developed for the ASU Foundation and the Fulton Center by Team Green Impact with the goal of establishing a facility based year for the foundation to meet their

These documents were developed as part of the culminating experience project for the Masters of Sustainability Solutions (MSUS) graduate program. This report was developed for the ASU Foundation and the Fulton Center by Team Green Impact with the goal of establishing a facility based year for the foundation to meet their 2035 net-zero target. Contents of this report include: Scope 1 and Scope 2 GHG emission measurements for the Fulton Center, GHG emission reduction recommendations, an infographic for internal stakeholder engagement, and an example net-zero strategy the foundation can utilize in their current and future building. The purpose of the report and the infographic is to inform next steps for reducing GHG emissions and to help the ASU Foundation make progress towards their net-zero target.
ContributorsFowler, Carissa (Author) / Boss, Lauren (Author) / Austin, Lesley (Author)
Created2023-05-01
188807-Thumbnail Image.png
ContributorsFowler, Carissa (Author) / Boss, Lauren (Author) / Austin, Lesley (Author)
Created2023-05-01
188808-Thumbnail Image.png
ContributorsFowler, Carissa (Author) / Boss, Lauren (Author) / Austin, Lesley (Author)
Created2023-05-01