Student capstone and applied projects from ASU's School of Sustainability.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

Description
In northern Arizona, the removal of woody biomass from forested land has garnered a high level of interest as threats of catastrophic wildfires have increased in recent years. Although there has been a great deal of vocal support for forest restoration, efforts on the ground are often stalled by complex

In northern Arizona, the removal of woody biomass from forested land has garnered a high level of interest as threats of catastrophic wildfires have increased in recent years. Although there has been a great deal of vocal support for forest restoration, efforts on the ground are often stalled by complex federal contracting systems, a weak logging and sawmill industry, low-quality timber, and inabilities to guarantee long-term biomass supplies to processers. These barriers are exceedingly apparent in in the Flagstaff area, where the vast majority of forested land falls under the jurisdiction of the federal government and little infrastructure exists for wood product industries. In order to address these obstacles, forest stakeholders in Coconino County are actively searching for enterprises to utilize material that urgently needs to be removed from the surrounding forests. This project aimed to assist stakeholders in this endeavor by identifying and researching a number of practical and innovative woody biomass utilization enterprises that are suited to the existing regional infrastructure. While there are a variety of ways to process biomass, this project focuses on the following four end products because of their ability to use residual materials from harvest and sawmill operations, their low-tech nature, and the end product’s proximity to potential markets: biochar, compost, wood-plastic composites, and mushroom cultivation. Each of these products, and the processes used to create them, were analyzed and evaluated using a sustainable enterprise framework, and the final results were summarized in a portfolio for stakeholders in the region to review. Although this project offered just a glimpse of what is possible, the ultimate aim was to foster collaborative conversations regarding how forest restoration residues can be used in sustainable and innovative ways.
ContributorsPaulus, Caitlin (Contributor)
Created2019-05-15
Description

Domestic energy is an important component of our day to day lives and is something we cannot live without. Imagine how life would be without a means to cook our food, to warm our house, life would be unbearable. As we enjoy these comforts rarely do we stop to think

Domestic energy is an important component of our day to day lives and is something we cannot live without. Imagine how life would be without a means to cook our food, to warm our house, life would be unbearable. As we enjoy these comforts rarely do we stop to think what the opportunity cost is. For those using renewable sources, it is not a big issue, but for those who rely on wood fuel, they have to strike a delicate balance between need for fuel and the need to conserve the greatest support systems of their livelihoods, the forests. The main source of energy for households in many developing countries is biomass, mainly from forests and woodlands. The continued use of firewood and charcoal fuel puts a strain on forests, resulting in adverse effects on the environment such as prolonged droughts, loss of biodiversity, dwindling water resources, changing weather patterns among other sustainability challenges. An alternative to firewood to charcoal lies in biochar briquettes. This paper discusses the role of biochar briquettes in mitigating climate change and serves as a step by step guide on how biochar briquettes may be produced.

ContributorsNganga, Patrick M. (Author)
Created2018
126694-Thumbnail Image.png
Description
Of the many challenges cities face, congestion and air quality are two interrelated issues that despite technological improvements in vehicle emissions standards and engine efficiency, continue to worsen. Of the strategies attempting to reduce automobile dependency, a popular approach adopted by cities is the concept of transit-oriented development (TOD). The

Of the many challenges cities face, congestion and air quality are two interrelated issues that despite technological improvements in vehicle emissions standards and engine efficiency, continue to worsen. Of the strategies attempting to reduce automobile dependency, a popular approach adopted by cities is the concept of transit-oriented development (TOD). The strategy aims to better integrate land use and transportation planning, and is often characterized by a mix of land uses, high density, and proximity to quality public transit. While practitioners and academics argue the economic and environmental benefits of TOD, there are several examples along the Valley Metro light rail corridor where the strategy appears to be failing to attract people, businesses, and ultimately transit riders. The purpose of this study is to explore how urban infrastructure characteristics, specifically transportation connectivity, urban design, and land use interact to support light rail ridership. The study utilizes a rendition of sustainability’s triple-bottom-line framework, wherein economic, environmental, and social elements are represented as criteria in the transportation, land use, and urban design analysis of six Valley Metro light rail stations. Each element has supporting criteria that are ranked relative to the other stations under analysis, culminating in overall TOD scores for each station. The number of TOD projects and ridership trends are also compared, and in combination with the evaluation of urban infrastructure elements, the results suggest the importance of transportation connectivity, pedestrian-scale infrastructure, a sense of place, and employment centers for TOD stations to yield high ridership. Findings are analyzed through a sustainability lens resulting in the proposal of strategic solutions for improving TOD planning methods.
ContributorsSantiago, Rebecca (Author) / Pijawka, David (Contributor) / Prosser, Paul (Contributor)
Created2017-04-17