The title “Regents’ Professor” is the highest faculty honor awarded at Arizona State University. It is conferred on ASU faculty who have made pioneering contributions in their areas of expertise, who have achieved a sustained level of distinction, and who enjoy national and international recognition for these accomplishments. This collection contains primarily open access works by ASU Regents' Professors.

Displaying 191 - 200 of 211
130423-Thumbnail Image.png
Description
The effects of surface pretreatment, dielectric growth, and post deposition annealing on interface electronic structure and polarization charge compensation of Ga- and N-face bulk GaN were investigated. The cleaning process consisted of an ex-situ wet chemical NH[subscript 4]OH treatment and an in-situ elevated temperature NH[subscript 3] plasma process to remove

The effects of surface pretreatment, dielectric growth, and post deposition annealing on interface electronic structure and polarization charge compensation of Ga- and N-face bulk GaN were investigated. The cleaning process consisted of an ex-situ wet chemical NH[subscript 4]OH treatment and an in-situ elevated temperature NH[subscript 3] plasma process to remove carbon contamination, reduce oxygen coverage, and potentially passivate N-vacancy related defects. After the cleaning process, carbon contamination decreased below the x-ray photoemission spectroscopy detection limit, and the oxygen coverage stabilized at ∼1 monolayer on both Ga- and N-face GaN. In addition, Ga- and N-face GaN had an upward band bending of 0.8 ± 0.1 eV and 0.6 ± 0.1 eV, respectively, which suggested the net charge of the surface states and polarization bound charge was similar on Ga- and N-face GaN. Furthermore, three dielectrics (HfO[subscript 2], Al[subscript 2]O[subscript 3], and SiO[subscript 2]) were prepared by plasma-enhanced atomic layer deposition on Ga- or N-face GaN and annealed in N[subscript 2] ambient to investigate the effect of the polarization charge on the interface electronic structure and band offsets. The respective valence band offsets of HfO[subscript 2], Al[subscript 2]O[subscript 3], and SiO[subscript 2] with respect to Ga- and N-face GaN were 1.4 ± 0.1, 2.0 ± 0.1, and 3.2 ± 0.1 eV, regardless of dielectric thickness. The corresponding conduction band offsets were 1.0 ± 0.1, 1.3 ± 0.1, and 2.3 ± 0.1 eV, respectively. Experimental band offset results were consistent with theoretical calculations based on the charge neutrality level model. The trend of band offsets for dielectric/GaN interfaces was related to the band gap and/or the electronic part of the dielectric constant. The effect of polarization charge on band offset was apparently screened by the dielectric-GaN interface states.
ContributorsYang, Jialing (Author) / Eller, Brianna S. (Author) / Nemanich, Robert (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor)
Created2014-09-28
130422-Thumbnail Image.png
Description
The flexural behavior of epoxies was investigated by performing mechanical tests and applying statistical Weibull theory and analytical methods to the results. The effects of loading systems and environmental conditions were also considered. Three kinds of epoxies were studied: Epon E863, PRI 2002, and PR520. In total, 53 three-point-bending (3PB)

The flexural behavior of epoxies was investigated by performing mechanical tests and applying statistical Weibull theory and analytical methods to the results. The effects of loading systems and environmental conditions were also considered. Three kinds of epoxies were studied: Epon E863, PRI 2002, and PR520. In total, 53 three-point-bending (3PB) Epon E863 samples and 26 3PB PR520 were tested immediately after curing, together with 26 four-point-bending (4PB) PRI2002 samples stored at 60°C and 90% Rh for 48 weeks. The Weibull parameters were estimated using both linear regression and the moments method. The statistical character of the Weibull model leads to uncertainty in the evaluated parameters, even for a large number of experiments. This study analyzed the ratio of flexural strength to tensile strength in bulk epoxy resin polymers. An analytical method previously developed by the authors to study the relationship between uniaxial tension/compression stress-strain curves and flexural load-deflection response was used to obtain the ratio. The results show that the Weibull model overpredicted the aforementioned ratio in different load arrangements.
Created2014-12-01
130421-Thumbnail Image.png
Description
Tree and shrub abundance has increased in many grasslands causing changes in ecosystem carbon and nitrogen pools that are related to patterns of woody plant distribution. However, with regard to spatial patterns of shrub proliferation, little is known about how they are influenced by grazing or the extent to which

Tree and shrub abundance has increased in many grasslands causing changes in ecosystem carbon and nitrogen pools that are related to patterns of woody plant distribution. However, with regard to spatial patterns of shrub proliferation, little is known about how they are influenced by grazing or the extent to which they are influenced by intraspecific interactions. We addressed these questions by quantifying changes in the spatial distribution of Prosopis velutina (mesquite) shrubs over 74 years on grazed and protected grasslands. Livestock are effective agents of mesquite dispersal and mesquite plants have lateral roots extending well beyond the canopy. We therefore hypothesized that mesquite distributions would be random on grazed areas mainly due to cattle dispersion and clustered on protected areas due to decreased dispersal and interspecific interference with grasses; and that clustered or random distributions at early stages of encroachment would give way to regular distributions as stands matured and density-dependent interactions intensified. Assessments in 1932, 1948, and 2006 supported the first hypothesis, but we found no support for the second. In fact, clustering intensified with time on the protected area and the pattern remained random on the grazed site. Although shrub density increased on both areas between 1932 and 2006, we saw no progression toward a regular distribution indicative of density-dependent interactions. We propose that processes related to seed dispersal, grass–shrub seedling interactions, and hydrological constraints on shrub size interact to determine vegetation structure in grassland-to-shrubland state changes with implications for ecosystem function and management.
Created2014-09-01
130420-Thumbnail Image.png
Description

Eigenvalues of the 3D critical point equation (∇u)ν = λν are normally computed numerically. In the letter, we present analytic solutions for 3D swirling strength in both compressible and incompressible flows. The solutions expose functional dependencies that cannot be seen in numerical solutions. To illustrate, we study the difference between

Eigenvalues of the 3D critical point equation (∇u)ν = λν are normally computed numerically. In the letter, we present analytic solutions for 3D swirling strength in both compressible and incompressible flows. The solutions expose functional dependencies that cannot be seen in numerical solutions. To illustrate, we study the difference between using fluctuating and total velocity gradient tensors for vortex identification. Results show that mean shear influences vortex detection and that distortion can occur, depending on the strength of mean shear relative to the vorticity at the vortex center.

Created2014-08-01
130419-Thumbnail Image.png
Description
Chloroform and methanol are superior solvents for lipid extraction from photosynthetic microorganisms, because they can overcome the resistance offered by the cell walls and membranes, but they are too toxic and expensive to use for large-scale fuel production. Biomass from the photosynthetic microalga Scenedesmus, subjected to a commercially available pre-treatment

Chloroform and methanol are superior solvents for lipid extraction from photosynthetic microorganisms, because they can overcome the resistance offered by the cell walls and membranes, but they are too toxic and expensive to use for large-scale fuel production. Biomass from the photosynthetic microalga Scenedesmus, subjected to a commercially available pre-treatment technology called Focused-Pulsed® (FP), yielded 3.1-fold more crude lipid and fatty acid methyl ester (FAME) after extraction with a range of solvents. FP treatment increased the FAME-to-crude-lipid ratio for all solvents, which means that the extraction of non-lipid materials was minimized, while the FAME profile itself was unchanged compared to the control. FP treatment also made it possible to use only a small proportion of chloroform and methanol, along with isopropanol, to obtain equivalent yields of lipid and FAME as with 100% chloroform plus methanol.
ContributorsLai, Yenjung Sean (Author) / Parameswaran, Prathap (Author) / Li, Ang (Author) / Baez, Maria (Author) / Rittmann, Bruce (Author) / Biodesign Institute (Contributor) / Swette Center for Environmental Biotechnology (Contributor)
Created2014-12-01
130417-Thumbnail Image.png
Description
The increase of transmission line thermal ratings by reconductoring with high temperature low sag conductors is a comparatively new technology introduced for transmission expansion. A special design permits high temperature low sag conductors to operate at higher temperatures, therefore allowing passage of higher current and, thus, increasing the thermal rating

The increase of transmission line thermal ratings by reconductoring with high temperature low sag conductors is a comparatively new technology introduced for transmission expansion. A special design permits high temperature low sag conductors to operate at higher temperatures, therefore allowing passage of higher current and, thus, increasing the thermal rating of the transmission line. The comparatively high cost of high temperature low sag conductors may be an obstacle to its large-scale implementation. This article evaluates the expenditures for transmission line reconductoring using high temperature low sag, the consequent benefits obtained from the potential decrease in operating cost for thermally limited power transmission systems. Estimates of the “payback period” are used to evaluate the cost effectiveness of reconductoring with high temperature low sag. The evaluation is performed using a 225 bus equivalent of the 2012 summer peak Arizona portion of the Western Electricity Coordinating Council. The method is offered for transmission expansion analysis in which an economic benefit is calculated to assist in the transmission expansion decision.
Created2015-02-07
130416-Thumbnail Image.png
Description
High phase order systems have been proposed at the early inception of power transmission engineering, but few direct applications have been made. High phase order transmission should be considered as an alternative in the case of high power density applications. In this article, an analysis of transposition of high phase

High phase order systems have been proposed at the early inception of power transmission engineering, but few direct applications have been made. High phase order transmission should be considered as an alternative in the case of high power density applications. In this article, an analysis of transposition of high phase order overhead transmission lines is presented and voltage unbalance in high phase order systems is considered. Definitions are presented for “fully transposed” and “roll transposed” along with advantages and disadvantages of each. A generalized voltage unbalance factor is introduced and utilized to determine the benefits of transposition. The generalized voltage unbalance factor is compared with three other possible unbalance factors to determine if the generalized voltage unbalance factor is an appropriate indication of unbalance. Exemplary results are presented for 6-phase and 12-phase designs. Conclusions show that the generalized voltage unbalance factor is a good indication of transmission line voltage unbalance and certain configurations may not need full rotation transposition to minimize the unbalance factor. The transposition analysis and voltage unbalance are considerations in the assessment of high phase order as a high power transmission alternative.
Created2014-11-18
130414-Thumbnail Image.png
Description
Species distribution modeling (SDM) is a methodology that has been widely used in the past two decades for developing quantitative, empirical, predictive models of species–environment relationships. SDM methods could be more broadly applied than they currently are to address research questions in archaeology and paleoanthropology. Specifically, SDM can be used

Species distribution modeling (SDM) is a methodology that has been widely used in the past two decades for developing quantitative, empirical, predictive models of species–environment relationships. SDM methods could be more broadly applied than they currently are to address research questions in archaeology and paleoanthropology. Specifically, SDM can be used to hindcast paleodistributions of species and ecological communities (paleo-SDM) for time periods and locations of prehistoric human occupation. Paleo-SDM may be a powerful tool for understanding human prehistory if used to hindcast the distributions of plants, animals and ecological communities that were key resources for prehistoric humans and to use this information to reconstruct the resource landscapes (paleoscapes) of prehistoric people. Components of the resource paleoscape include species (game animals, food plants), habitats, and geologic features and landforms associated with stone materials for tools, pigments, and so forth. We first review recent advances in SDM as it has been used to hindcast paleodistributions of plants and animals in the field of paleobiology. We then compare the paleo-SDM approach to paleoenvironmental reconstructions modeled from zooarchaeological and archaeobotanical records, widely used in archaeology and paleoanthropology. Next, we describe the less well developed but promising approach of using paleo-SDM methods to reconstruct resource paleoscapes. We argue that paleo-SDM offers an explicitly deductive strategy that generates spatial predictions grounded in strong theoretical understandings of the relation between species, habitat distributions and environment. Because of their limited sampling of space and time, archaeobiological records may be better suited for paleo-SDM validation than directly for paleoenvironmental reconstruction. We conclude by discussing the data requirements, limitations and potential for using predictive modeling to reconstruct resource paleoscapes. There is a need for improved paleoclimate models, improved paleoclimate proxy and species paleodistribution data for model validation, attention to scale issues, and rigorous modeling methods including mechanistic models.
Created2014-12-17