The title “Regents’ Professor” is the highest faculty honor awarded at Arizona State University. It is conferred on ASU faculty who have made pioneering contributions in their areas of expertise, who have achieved a sustained level of distinction, and who enjoy national and international recognition for these accomplishments. This collection contains primarily open access works by ASU Regents' Professors.

Displaying 1 - 10 of 13
Filtering by

Clear all filters

130287-Thumbnail Image.png
Description
Precipitation and temperature enact variable influences on vegetation, impacting the type and condition of land cover, as well as the assessment of change over broad landscapes. Separating the influence of vegetative variability independent and discrete land cover change remains a major challenge to landscape change assessments. The heterogeneous Lerma-Chapala-Santiago watershed

Precipitation and temperature enact variable influences on vegetation, impacting the type and condition of land cover, as well as the assessment of change over broad landscapes. Separating the influence of vegetative variability independent and discrete land cover change remains a major challenge to landscape change assessments. The heterogeneous Lerma-Chapala-Santiago watershed of central Mexico exemplifies both natural and anthropogenic forces enacting variability and change on the landscape. This study employed a time series of Enhanced Vegetation Index (EVI) composites from the Moderate Resolution Imaging Spectoradiometer (MODIS) for 2001–2007 and per-pixel multiple linear regressions in order to model changes in EVI as a function of precipitation, temperature, and elevation. Over the seven-year period, 59.1% of the variability in EVI was explained by variability in the independent variables, with highest model performance among changing and heterogeneous land cover types, while intact forest cover demonstrated the greatest resistance to changes in temperature and precipitation. Model results were compared to an independent change uncertainty assessment, and selected regional samples of change confusion and natural variability give insight to common problems afflicting land change analyses.
Created2016-06-07
130268-Thumbnail Image.png
Description
Purpose: To evaluate a new method of measuring ocular exposure in the context of a natural blink pattern through analysis of the variables tear film breakup time (TFBUT), interblink interval (IBI), and tear film breakup area (BUA).
Methods: The traditional methodology (Forced-Stare [FS]) measures TFBUT and IBI separately. TFBUT is measured

Purpose: To evaluate a new method of measuring ocular exposure in the context of a natural blink pattern through analysis of the variables tear film breakup time (TFBUT), interblink interval (IBI), and tear film breakup area (BUA).
Methods: The traditional methodology (Forced-Stare [FS]) measures TFBUT and IBI separately. TFBUT is measured under forced-stare conditions by an examiner using a stopwatch, while IBI is measured as the subject watches television. The new methodology (video capture manual analysis [VCMA]) involves retrospective analysis of video data of fluorescein-stained eyes taken through a slit lamp while the subject watches television, and provides TFBUT and BUA for each IBI during the 1-minute video under natural blink conditions. The FS and VCMA methods were directly compared in the same set of dry-eye subjects. The VCMA method was evaluated for the ability to discriminate between dry-eye subjects and normal subjects. The VCMA method was further evaluated in the dry eye subjects for the ability to detect a treatment effect before, and 10 minutes after, bilateral instillation of an artificial tear solution.
Results: Ten normal subjects and 17 dry-eye subjects were studied. In the dry-eye subjects, the two methods differed with respect to mean TFBUTs (5.82 seconds, FS; 3.98 seconds, VCMA; P = 0.002). The FS variables alone (TFBUT, IBI) were not able to successfully distinguish between the dry-eye and normal subjects, whereas the additional VCMA variables, both derived and observed (BUA, BUA/IBI, breakup rate), were able to successfully distinguish between the dry-eye and normal subjects in a statistically significant fashion. TFBUT (P = 0.034) and BUA/IBI (P = 0.001) were able to distinguish the treatment effect of artificial tears in dry-eye subjects.
Conclusion: The VCMA methodology provides a clinically relevant analysis of tear film stability measured in the context of a natural blink pattern.
Created2011-09-21
130267-Thumbnail Image.png
Description
Purpose: To investigate use of an improved ocular tear film analysis protocol (OPI 2.0) in the Controlled Adverse Environment (CAE[superscript SM]) model of dry eye disease, and to examine the utility of new metrics in the identification of subpopulations of dry eye patients.
Methods: Thirty-three dry eye subjects completed a single-center,

Purpose: To investigate use of an improved ocular tear film analysis protocol (OPI 2.0) in the Controlled Adverse Environment (CAE[superscript SM]) model of dry eye disease, and to examine the utility of new metrics in the identification of subpopulations of dry eye patients.
Methods: Thirty-three dry eye subjects completed a single-center, single-visit, pilot CAE study. The primary endpoint was mean break-up area (MBA) as assessed by the OPI 2.0 system. Secondary endpoints included corneal fluorescein staining, tear film break-up time, and OPI 2.0 system measurements. Subjects were also asked to rate their ocular discomfort throughout the CAE. Dry eye endpoints were measured at baseline, immediately following a 90-minute CAE exposure, and again 30 minutes after exposure.
Results: The post-CAE measurements of MBA showed a statistically significant decrease from the baseline measurements. The decrease was relatively specific to those patients with moderate to severe dry eye, as measured by baseline MBA. Secondary endpoints including palpebral fissure size, corneal staining, and redness, also showed significant changes when pre- and post-CAE measurements were compared. A correlation analysis identified specific associations between MBA, blink rate, and palpebral fissure size. Comparison of MBA responses allowed us to identify subpopulations of subjects who exhibited different compensatory mechanisms in response to CAE challenge. Of note, none of the measures of tear film break-up time showed statistically significant changes or correlations in pre-, versus post-CAE measures.
Conclusion: This pilot study confirms that the tear film metric MBA can detect changes in the ocular surface induced by a CAE, and that these changes are correlated with other, established measures of dry eye disease. The observed decrease in MBA following CAE exposure demonstrates that compensatory mechanisms are initiated during the CAE exposure, and that this compensation may provide the means to identify and characterize clinically relevant subpopulations of dry eye patients.
Created2012-11-12
130257-Thumbnail Image.png
Description
Fire is one of the earliest and most common tools used by humans to modify the earth surface. Landscapes in the Yucatán Peninsula are composed of a mosaic of old growth subtropical forest, secondary vegetation, grasslands, and agricultural land that represent a well-documented example of anthropogenic intervention, much of which

Fire is one of the earliest and most common tools used by humans to modify the earth surface. Landscapes in the Yucatán Peninsula are composed of a mosaic of old growth subtropical forest, secondary vegetation, grasslands, and agricultural land that represent a well-documented example of anthropogenic intervention, much of which involves the use of fire. This research characterizes land use systems and land cover changes in the Yucatán during the 2000–2010 time period. We used an active fire remotely sensed data time series from the Moderate Resolution Imaging Spectroradiometer (MODIS), in combination with forest loss, and anthrome map sources to (1) establish the association between fire and land use change in the region; and (2) explore links between the spatial and temporal patterns of fire and specific types of land use practices, including within- and between-anthromes variability. A spatial multinomial logit model was constructed using fire, landscape configuration, and a set of commonly used control variables to estimate forest persistence, non-forest persistence, and change. Cross-tabulations and descriptive statistics were used to explore the relationships between fire occurrence, location, and timing with respect to the geography of land use. We also compared fire frequencies within and between anthrome groups using a negative binomial model and Tukey pairwise comparisons. Results show that fire data broadly reproduce the geography and timing of anthropogenic land change. Findings indicate that fire and landscape configuration is useful in explaining forest change and non-forest persistence, especially in fragmented (mosaicked) landscapes. Absence of fire occurrence is related usefully to the persistence of spatially continuous core areas of older growth forest. Fire has a positive relationship with forest to non-forest change and a negative relationship with forest persistence. Fire is also a good indicator to distinguish between anthrome groups (e.g., croplands and villages). Our study suggests that active fire data series are a reasonable proxy for anthropogenic land persistence/change in the context of the Yucatán and are useful to differentiate quantitatively and qualitatively between and within anthromes.
Created2017-09-12
130335-Thumbnail Image.png
Description
A species’ response to climate change depends on the interaction of biotic and abiotic factors that define future habitat suitability and species’ ability to migrate or adapt. The interactive effects of processes such as fire, dispersal, and predation have not been thoroughly addressed in the climate change literature. Our objective

A species’ response to climate change depends on the interaction of biotic and abiotic factors that define future habitat suitability and species’ ability to migrate or adapt. The interactive effects of processes such as fire, dispersal, and predation have not been thoroughly addressed in the climate change literature. Our objective was to examine how life history traits, short-term global change perturbations, and long-term climate change interact to affect the likely persistence of an oak species - Quercus engelmannii (Engelmann oak). Specifically, we combined dynamic species distribution models, which predict suitable habitat, with stochastic, stage-based metapopulation models, which project population trajectories, to evaluate the effects of three global change factors – climate change, land use change, and altered fire frequency – emphasizing the roles of dispersal and seed predation. Our model predicted dramatic reduction in Q. engelmannii abundance, especially under drier climates and increased fire frequency. When masting lowers seed predation rates, decreased masting frequency leads to large abundance decreases. Current rates of dispersal are not likely to prevent these effects, although increased dispersal could mitigate population declines. The results suggest that habitat suitability predictions by themselves may under-estimate the impact of climate change for other species and locations.
ContributorsConlisk, Erin (Author) / Lawson, Dawn (Author) / Syphard, Alexandra D. (Author) / Franklin, Janet (Author) / Flint, Lorraine (Author) / Flint, Alan (Author) / Regan, Helen M. (Author) / College of Liberal Arts and Sciences (Contributor) / School of Geographical Sciences and Urban Planning (Contributor)
Created2012-05-18
130331-Thumbnail Image.png
Description
Urban economic modeling and effective spatial planning are critical tools towards achieving urban sustainability. However, in practice, many technical obstacles, such as information islands, poor documentation of data and lack of software platforms to facilitate virtual collaboration, are challenging the effectiveness of decision-making processes. In this paper, we report on

Urban economic modeling and effective spatial planning are critical tools towards achieving urban sustainability. However, in practice, many technical obstacles, such as information islands, poor documentation of data and lack of software platforms to facilitate virtual collaboration, are challenging the effectiveness of decision-making processes. In this paper, we report on our efforts to design and develop a geospatial cyberinfrastructure (GCI) for urban economic analysis and simulation. This GCI provides an operational graphic user interface, built upon a service-oriented architecture to allow (1) widespread sharing and seamless integration of distributed geospatial data; (2) an effective way to address the uncertainty and positional errors encountered in fusing data from diverse sources; (3) the decomposition of complex planning questions into atomic spatial analysis tasks and the generation of a web service chain to tackle such complex problems; and (4) capturing and representing provenance of geospatial data to trace its flow in the modeling task. The Greater Los Angeles Region serves as the test bed. We expect this work to contribute to effective spatial policy analysis and decision-making through the adoption of advanced GCI and to broaden the application coverage of GCI to include urban economic simulations.
Created2013-05-21
130330-Thumbnail Image.png
Description
Evolving Earth observation and change detection techniques enable the automatic identification of Land Use and Land Cover Change (LULCC) over a large extent from massive amounts of remote sensing data. It at the same time poses a major challenge in effective organization, representation and modeling of such information. This study

Evolving Earth observation and change detection techniques enable the automatic identification of Land Use and Land Cover Change (LULCC) over a large extent from massive amounts of remote sensing data. It at the same time poses a major challenge in effective organization, representation and modeling of such information. This study proposes and implements an integrated computational framework to support the modeling, semantic and spatial reasoning of change information with regard to space, time and topology. We first proposed a conceptual model to formally represent the spatiotemporal variation of change data, which is essential knowledge to support various environmental and social studies, such as deforestation and urbanization studies. Then, a spatial ontology was created to encode these semantic spatiotemporal data in a machine-understandable format. Based on the knowledge defined in the ontology and related reasoning rules, a semantic platform was developed to support the semantic query and change trajectory reasoning of areas with LULCC. This semantic platform is innovative, as it integrates semantic and spatial reasoning into a coherent computational and operational software framework to support automated semantic analysis of time series data that can go beyond LULC datasets. In addition, this system scales well as the amount of data increases, validated by a number of experimental results. This work contributes significantly to both the geospatial Semantic Web and GIScience communities in terms of the establishment of the (web-based) semantic platform for collaborative question answering and decision-making.
Created2016-10-25
130396-Thumbnail Image.png
Description

Aim
To establish a chronology for late Quaternary avian extinction, extirpation and persistence in the Bahamas, thereby testing the relative roles of climate change and human impact as causes of extinction.
Location
Great Abaco Island (Abaco), Bahamas, West Indies.
Methods
We analysed the resident bird community as sampled by Pleistocene (> 11.7 ka) and Holocene

Aim
To establish a chronology for late Quaternary avian extinction, extirpation and persistence in the Bahamas, thereby testing the relative roles of climate change and human impact as causes of extinction.
Location
Great Abaco Island (Abaco), Bahamas, West Indies.
Methods
We analysed the resident bird community as sampled by Pleistocene (> 11.7 ka) and Holocene (< 11.7 ka) fossils. Each species was classified as extinct (lost globally), extirpated (gone from Abaco but persists elsewhere), or extant (still resident on Abaco). We compared patterns of extinction, extirpation and persistence to independent estimates of climate and sea level for glacial (late Pleistocene) and interglacial (Holocene) times.
Results
Of 45 bird species identified in Pleistocene fossils, 25 (56%) no longer occur on Abaco (21 extirpated, 4 extinct). Of 37 species recorded in Holocene deposits, 15 (14 extirpated, 1 extinct; total 41%) no longer exist on Abaco. Of the 30 extant species, 12 were recovered as both Pleistocene and Holocene fossils, as were 9 of the 30 extirpated or extinct species. Most of the extinct or extirpated species that were only recorded from Pleistocene contexts are characteristic of open habitats (pine woodlands or grasslands); several of the extirpated species are currently found only where winters are cooler than in the modern or Pleistocene Bahamas. In contrast, most of the extinct or extirpated species recorded from Holocene contexts are habitat generalists.
Main conclusions
The fossil evidence suggests two main times of late Quaternary avian extirpation and extinction in the Bahamas. The first was during the Pleistocene–Holocene transition (PHT; 15–9 ka) and was fuelled by climate change and associated changes in sea level and island area. The second took place during the late Holocene (< 4 ka, perhaps primarily < 1 ka) and can be attributed to human impact. Although some species lost during the PHT are currently found where climates are cooler and drier than in the Bahamas today, a taxonomically and ecologically diverse set of species persisted through that major climate change but did not survive the past millennium of human presence.

Created2015-03-01
130391-Thumbnail Image.png
Description
Estimating and projecting population trends using population viability analysis (PVA) are central to identifying species at risk of extinction and for informing conservation management strategies. Models for PVA generally fall within two categories, scalar (count-based) or matrix (demographic). Model structure, process error, measurement error, and time series length all have

Estimating and projecting population trends using population viability analysis (PVA) are central to identifying species at risk of extinction and for informing conservation management strategies. Models for PVA generally fall within two categories, scalar (count-based) or matrix (demographic). Model structure, process error, measurement error, and time series length all have known impacts in population risk assessments, but their combined impact has not been thoroughly investigated. We tested the ability of scalar and matrix PVA models to predict percent decline over a ten-year interval, selected to coincide with the IUCN Red List criterion A. 3, using data simulated for a hypothetical, short-lived organism with a simple life-history and for a threatened snail, Tasmaphena lamproides. PVA performance was assessed across different time series lengths, population growth rates, and levels of process and measurement error. We found that the magnitude of effects of measurement error, process error, and time series length, and interactions between these, depended on context. We found that high process and measurement error reduced the reliability of both models in predicted percent decline. Both sources of error contributed strongly to biased predictions, with process error tending to contribute to the spread of predictions more than measurement error. Increasing time series length improved precision and reduced bias of predicted population trends, but gains substantially diminished for time series lengths greater than 10-15 years. The simple parameterization scheme we employed contributed strongly to bias in matrix model predictions when both process and measurement error were high, causing scalar models to exhibit similar or greater precision and lower bias than matrix models. Our study provides evidence that, for short-lived species with structured but simple life histories, short time series and simple models can be sufficient for reasonably reliable conservation decision-making, and may be preferable for population projections when unbiased estimates of vital rates cannot be obtained.
Created2015-07-15
130375-Thumbnail Image.png
Description
This article reviews the range of delivery platforms that have been developed for the PySAL open source Python library for spatial analysis. This includes traditional desktop software (with a graphical user interface, command line or embedded in a computational notebook), open spatial analytics middleware, and web, cloud and distributed open

This article reviews the range of delivery platforms that have been developed for the PySAL open source Python library for spatial analysis. This includes traditional desktop software (with a graphical user interface, command line or embedded in a computational notebook), open spatial analytics middleware, and web, cloud and distributed open geospatial analytics for decision support. A common thread throughout the discussion is the emphasis on openness, interoperability, and provenance management in a scientific workflow. The code base of the PySAL library provides the common computing framework underlying all delivery mechanisms.
ContributorsRey, Sergio (Author) / Anselin, Luc (Author) / Li, Xun (Author) / Pahle, Robert (Author) / Laura, Jason (Author) / Li, Wenwen (Author) / Koschinsky, Julia (Author) / College of Liberal Arts and Sciences (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / Computational Spatial Science (Contributor)
Created2015-06-01