The title “Regents’ Professor” is the highest faculty honor awarded at Arizona State University. It is conferred on ASU faculty who have made pioneering contributions in their areas of expertise, who have achieved a sustained level of distinction, and who enjoy national and international recognition for these accomplishments. This collection contains primarily open access works by ASU Regents' Professors.

Displaying 1 - 10 of 13
Filtering by

Clear all filters

130364-Thumbnail Image.png
Description
Background
Drosophila melanogaster has been established as a model organism for investigating the developmental gene interactions. The spatio-temporal gene expression patterns of Drosophila melanogaster can be visualized by in situ hybridization and documented as digital images. Automated and efficient tools for analyzing these expression images will provide biological insights into the

Background
Drosophila melanogaster has been established as a model organism for investigating the developmental gene interactions. The spatio-temporal gene expression patterns of Drosophila melanogaster can be visualized by in situ hybridization and documented as digital images. Automated and efficient tools for analyzing these expression images will provide biological insights into the gene functions, interactions, and networks. To facilitate pattern recognition and comparison, many web-based resources have been created to conduct comparative analysis based on the body part keywords and the associated images. With the fast accumulation of images from high-throughput techniques, manual inspection of images will impose a serious impediment on the pace of biological discovery. It is thus imperative to design an automated system for efficient image annotation and comparison.
Results
We present a computational framework to perform anatomical keywords annotation for Drosophila gene expression images. The spatial sparse coding approach is used to represent local patches of images in comparison with the well-known bag-of-words (BoW) method. Three pooling functions including max pooling, average pooling and Sqrt (square root of mean squared statistics) pooling are employed to transform the sparse codes to image features. Based on the constructed features, we develop both an image-level scheme and a group-level scheme to tackle the key challenges in annotating Drosophila gene expression pattern images automatically. To deal with the imbalanced data distribution inherent in image annotation tasks, the undersampling method is applied together with majority vote. Results on Drosophila embryonic expression pattern images verify the efficacy of our approach.
Conclusion
In our experiment, the three pooling functions perform comparably well in feature dimension reduction. The undersampling with majority vote is shown to be effective in tackling the problem of imbalanced data. Moreover, combining sparse coding and image-level scheme leads to consistent performance improvement in keywords annotation.
ContributorsSun, Qian (Author) / Muckatira, Sherin (Author) / Yuan, Lei (Author) / Ji, Shuiwang (Author) / Newfeld, Stuart (Author) / Kumar, Sudhir (Author) / Ye, Jieping (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Ira A. Fulton Schools of Engineering (Contributor)
Created2013-12-03
130370-Thumbnail Image.png
Description

Background:
Drosophila gene expression pattern images document the spatiotemporal dynamics of gene expression during embryogenesis. A comparative analysis of these images could provide a fundamentally important way for studying the regulatory networks governing development. To facilitate pattern comparison and searching, groups of images in the Berkeley Drosophila Genome Project (BDGP) high-throughput

Background:
Drosophila gene expression pattern images document the spatiotemporal dynamics of gene expression during embryogenesis. A comparative analysis of these images could provide a fundamentally important way for studying the regulatory networks governing development. To facilitate pattern comparison and searching, groups of images in the Berkeley Drosophila Genome Project (BDGP) high-throughput study were annotated with a variable number of anatomical terms manually using a controlled vocabulary. Considering that the number of available images is rapidly increasing, it is imperative to design computational methods to automate this task.

Results:
We present a computational method to annotate gene expression pattern images automatically. The proposed method uses the bag-of-words scheme to utilize the existing information on pattern annotation and annotates images using a model that exploits correlations among terms. The proposed method can annotate images individually or in groups (e.g., according to the developmental stage). In addition, the proposed method can integrate information from different two-dimensional views of embryos. Results on embryonic patterns from BDGP data demonstrate that our method significantly outperforms other methods.

Conclusion:
The proposed bag-of-words scheme is effective in representing a set of annotations assigned to a group of images, and the model employed to annotate images successfully captures the correlations among different controlled vocabulary terms. The integration of existing annotation information from multiple embryonic views improves annotation performance.

ContributorsJi, Shuiwang (Author) / Li, Ying-Xin (Author) / Zhou, Zhi-Hua (Author) / Kumar, Sudhir (Author) / Ye, Jieping (Author) / Biodesign Institute (Contributor) / Ira A. Fulton Schools of Engineering (Contributor) / School of Electrical, Computer and Energy Engineering (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2009-04-21
130388-Thumbnail Image.png
Description
Although conflict is a normative part of parent–adolescent relationships, conflicts that are long or highly negative are likely to be detrimental to these relationships and to youths’ development. In the present article, sequential analyses of data from 138 parent–adolescent dyads (adolescents’ mean age was 13.44, SD = 1.16; 52 %

Although conflict is a normative part of parent–adolescent relationships, conflicts that are long or highly negative are likely to be detrimental to these relationships and to youths’ development. In the present article, sequential analyses of data from 138 parent–adolescent dyads (adolescents’ mean age was 13.44, SD = 1.16; 52 % girls, 79 % non-Hispanic White) were used to define conflicts as reciprocal exchanges of negative emotion observed while parents and adolescents were discussing “hot,” conflictual issues. Dynamic components of these exchanges, including who started the conflicts, who ended them, and how long they lasted, were identified. Mediation analyses revealed that a high proportion of conflicts ended by adolescents was associated with longer conflicts, which in turn predicted perceptions of the “hot” issue as unresolved and adolescent behavior problems. The findings illustrate advantages of using sequential analysis to identify patterns of interactions and, with some certainty, obtain an estimate of the contingent relationship between a pattern of behavior and child and parental outcomes. These interaction patterns are discussed in terms of the roles that parents and children play when in conflict with each other, and the processes through which these roles affect conflict resolution and adolescents’ behavior problems.
ContributorsMoed, Anat (Author) / Gershoff, Elizabeth T. (Author) / Eisenberg, Nancy (Author) / Hofer, Claire (Author) / Losoya, Sandra (Author) / Spinrad, Tracy (Author) / Liew, Jeffrey (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Psychology (Contributor) / Sanford School of Social and Family Dynamics (Contributor)
Created2015-08-01
130330-Thumbnail Image.png
Description
Evolving Earth observation and change detection techniques enable the automatic identification of Land Use and Land Cover Change (LULCC) over a large extent from massive amounts of remote sensing data. It at the same time poses a major challenge in effective organization, representation and modeling of such information. This study

Evolving Earth observation and change detection techniques enable the automatic identification of Land Use and Land Cover Change (LULCC) over a large extent from massive amounts of remote sensing data. It at the same time poses a major challenge in effective organization, representation and modeling of such information. This study proposes and implements an integrated computational framework to support the modeling, semantic and spatial reasoning of change information with regard to space, time and topology. We first proposed a conceptual model to formally represent the spatiotemporal variation of change data, which is essential knowledge to support various environmental and social studies, such as deforestation and urbanization studies. Then, a spatial ontology was created to encode these semantic spatiotemporal data in a machine-understandable format. Based on the knowledge defined in the ontology and related reasoning rules, a semantic platform was developed to support the semantic query and change trajectory reasoning of areas with LULCC. This semantic platform is innovative, as it integrates semantic and spatial reasoning into a coherent computational and operational software framework to support automated semantic analysis of time series data that can go beyond LULC datasets. In addition, this system scales well as the amount of data increases, validated by a number of experimental results. This work contributes significantly to both the geospatial Semantic Web and GIScience communities in terms of the establishment of the (web-based) semantic platform for collaborative question answering and decision-making.
Created2016-10-25
130333-Thumbnail Image.png
Description
The growth rate hypothesis (GRH) proposes that higher growth rate (the rate of change in biomass per unit biomass, μ) is associated with higher P concentration and lower C∶P and N∶P ratios. However, the applicability of the GRH to vascular plants is not well-studied and few studies have been done

The growth rate hypothesis (GRH) proposes that higher growth rate (the rate of change in biomass per unit biomass, μ) is associated with higher P concentration and lower C∶P and N∶P ratios. However, the applicability of the GRH to vascular plants is not well-studied and few studies have been done on belowground biomass. Here we showed that, for aboveground, belowground and total biomass of three study species, μ was positively correlated with N∶C under N limitation and positively correlated with P∶C under P limitation. However, the N∶P ratio was a unimodal function of μ, increasing for small values of μ, reaching a maximum, and then decreasing. The range of variations in μ was positively correlated with variation in C∶N∶P stoichiometry. Furthermore, μ and C∶N∶P ranges for aboveground biomass were negatively correlated with those for belowground. Our results confirm the well-known association of growth rate with tissue concentration of the limiting nutrient and provide empirical support for recent theoretical formulations.
ContributorsYu, Qiang (Author) / Wu, Honghui (Author) / He, Nianpeng (Author) / Lu, Xiaotao (Author) / Wang, Zhiping (Author) / Elser, James (Author) / Wu, Jianguo (Author) / Han, Xingguo (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Julie Ann Wrigley Global Institute of Sustainability (Contributor) / School of Sustainability (Contributor)
Created2012-03-13
130345-Thumbnail Image.png
Description
Nitrogen (N) and phosphorus (P) are important limiting nutrients for plant production and consumer performance in a variety of ecosystems. As a result, the N:P stoichiometry of herbivores has received increased attention in ecology. However, the mechanisms by which herbivores maintain N:P stoichiometric homeostasis are poorly understood. Here, using a

Nitrogen (N) and phosphorus (P) are important limiting nutrients for plant production and consumer performance in a variety of ecosystems. As a result, the N:P stoichiometry of herbivores has received increased attention in ecology. However, the mechanisms by which herbivores maintain N:P stoichiometric homeostasis are poorly understood. Here, using a field manipulation experiment we show that the grasshopper Oedaleus asiaticus maintains strong N:P stoichiometric homeostasis regardless of whether grasshoppers were reared at low or high density. Grasshoppers maintained homeostasis by increasing P excretion when eating plants with higher P contents. However, while grasshoppers also maintained constant body N contents, we found no changes in N excretion in response to changing plant N content over the range measured. These results suggest that O. asiaticus maintains P homeostasis primarily by changing P absorption and excretion rates, but that other mechanisms may be more important for regulating N homeostasis. Our findings improve our understanding of consumer-driven P recycling and may help in understanding the factors affecting plant-herbivore interactions and ecosystem processes in grasslands.
ContributorsZhang, Zijia (Author) / Elser, James (Author) / Cease, Arianne (Author) / Zhang, Ximei (Author) / Yu, Qiang (Author) / Han, Xingguo (Author) / Zhang, Guangming (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Julie Ann Wrigley Global Institute of Sustainability (Contributor) / School of Sustainability (Contributor)
Created2014-08-04
130411-Thumbnail Image.png
Description
The purpose of this study was to examine whether dispositional sadness predicted children's prosocial behavior and if sympathy mediated this relation. Constructs were measured when children (n = 256 at time 1) were 18, 30, and 42 months old. Mothers and non-parental caregivers rated children's sadness; mothers, caregivers, and fathers rated

The purpose of this study was to examine whether dispositional sadness predicted children's prosocial behavior and if sympathy mediated this relation. Constructs were measured when children (n = 256 at time 1) were 18, 30, and 42 months old. Mothers and non-parental caregivers rated children's sadness; mothers, caregivers, and fathers rated children's prosocial behavior; sympathy (concern and hypothesis testing) and prosocial behavior (indirect and direct, as well as verbal at older ages) were assessed with a task in which the experimenter feigned injury. In a panel path analysis, 30-month dispositional sadness predicted marginally higher 42-month sympathy; in addition, 30-month sympathy predicted 42-month sadness. Moreover, when controlling for prior levels of prosocial behavior, 30-month sympathy significantly predicted reported and observed prosocial behavior at 42 months. Sympathy did not mediate the relation between sadness and prosocial behavior (either reported or observed).
Created2015-01-01
130426-Thumbnail Image.png
Description
A large fraction of the world grasslands and savannas are undergoing a rapid shift from herbaceous to woody-plant dominance. This land-cover change is expected to lead to a loss in livestock production (LP), but the impacts of woody-plant encroachment on this crucial ecosystem service have not been assessed. We evaluate

A large fraction of the world grasslands and savannas are undergoing a rapid shift from herbaceous to woody-plant dominance. This land-cover change is expected to lead to a loss in livestock production (LP), but the impacts of woody-plant encroachment on this crucial ecosystem service have not been assessed. We evaluate how tree cover (TC) has affected LP at large spatial scales in rangelands of contrasting social–economic characteristics in the United States and Argentina. Our models indicate that in areas of high productivity, a 1% increase in TC results in a reduction in LP ranging from 0.6 to 1.6 reproductive cows (Rc) per km[superscript 2]. Mean LP in the United States is 27 Rc per km[superscript 2], so a 1% increase in TC results in a 2.5% decrease in mean LP. This effect is large considering that woody-plant cover has been described as increasing at 0.5% to 2% per y. On the contrary, in areas of low productivity, increased TC had a positive effect on LP. Our results also show that ecological factors account for a larger fraction of LP variability in Argentinean than in US rangelands. Differences in the relative importance of ecological versus nonecological drivers of LP in Argentina and the United States suggest that the valuation of ecosystem services between these two rangelands might be different. Current management strategies in Argentina are likely designed to maximize LP for various reasons we are unable to explore in this effort, whereas land managers in the United States may be optimizing multiple ecosystem services, including conservation or recreation, alongside LP.
Created2014-09-02
130431-Thumbnail Image.png
Description
We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO[subscript 3]–) and perchlorate (ClO[subscript 4]–) in contaminated groundwater. The groundwater also contained oxygen (O[subscript 2]) and sulfate (SO[2 over 4]–), which became important electron sinks that affected the NO[subscript 3]– and ClO[subscript

We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO[subscript 3]–) and perchlorate (ClO[subscript 4]–) in contaminated groundwater. The groundwater also contained oxygen (O[subscript 2]) and sulfate (SO[2 over 4]–), which became important electron sinks that affected the NO[subscript 3]– and ClO[subscript 4]– removal rates. Using pyrosequencing, we elucidated how important phylotypes of each “primary” microbial group, i.e., denitrifying bacteria (DB), perchlorate-reducing bacteria (PRB), and sulfate-reducing bacteria (SRB), responded to changes in electron-acceptor loading. UniFrac, principal coordinate analysis (PCoA), and diversity analyses documented that the microbial community of biofilms sampled when the MBfRs had a high acceptor loading were phylogenetically distant from and less diverse than the microbial community of biofilm samples with lower acceptor loadings. Diminished acceptor loading led to SO[2 over 4]– reduction in the lag MBfR, which allowed Desulfovibrionales (an SRB) and Thiothrichales (sulfur-oxidizers) to thrive through S cycling. As a result of this cooperative relationship, they competed effectively with DB/PRB phylotypes such as Xanthomonadales and Rhodobacterales. Thus, pyrosequencing illustrated that while DB, PRB, and SRB responded predictably to changes in acceptor loading, a decrease in total acceptor loading led to important shifts within the “primary” groups, the onset of other members (e.g., Thiothrichales), and overall greater diversity.
Created2014-07-01
130363-Thumbnail Image.png
Description
Background
Fruit fly embryogenesis is one of the best understood animal development systems, and the spatiotemporal gene expression dynamics in this process are captured by digital images. Analysis of these high-throughput images will provide novel insights into the functions, interactions, and networks of animal genes governing development. To facilitate comparative analysis,

Background
Fruit fly embryogenesis is one of the best understood animal development systems, and the spatiotemporal gene expression dynamics in this process are captured by digital images. Analysis of these high-throughput images will provide novel insights into the functions, interactions, and networks of animal genes governing development. To facilitate comparative analysis, web-based interfaces have been developed to conduct image retrieval based on body part keywords and images. Currently, the keyword annotation of spatiotemporal gene expression patterns is conducted manually. However, this manual practice does not scale with the continuously expanding collection of images. In addition, existing image retrieval systems based on the expression patterns may be made more accurate using keywords.
Results
In this article, we adapt advanced data mining and computer vision techniques to address the key challenges in annotating and retrieving fruit fly gene expression pattern images. To boost the performance of image annotation and retrieval, we propose representations integrating spatial information and sparse features, overcoming the limitations of prior schemes.
Conclusions
We perform systematic experimental studies to evaluate the proposed schemes in comparison with current methods. Experimental results indicate that the integration of spatial information and sparse features lead to consistent performance improvement in image annotation, while for the task of retrieval, sparse features alone yields better results.
ContributorsYuan, Lei (Author) / Woodard, Alexander (Author) / Ji, Shuiwang (Author) / Jiang, Yuan (Author) / Zhou, Zhi-Hua (Author) / Kumar, Sudhir (Author) / Ye, Jieping (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor) / Ira A. Fulton Schools of Engineering (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2012-05-23