The title “Regents’ Professor” is the highest faculty honor awarded at Arizona State University. It is conferred on ASU faculty who have made pioneering contributions in their areas of expertise, who have achieved a sustained level of distinction, and who enjoy national and international recognition for these accomplishments. This collection contains primarily open access works by ASU Regents' Professors.

Displaying 1 - 10 of 19
Filtering by

Clear all filters

Description

Background:
Many pharmaceutical drugs are known to be ineffective or have negative side effects in a substantial proportion of patients. Genomic advances are revealing that some non-synonymous single nucleotide variants (nsSNVs) may cause differences in drug efficacy and side effects. Therefore, it is desirable to evaluate nsSNVs of interest in their

Background:
Many pharmaceutical drugs are known to be ineffective or have negative side effects in a substantial proportion of patients. Genomic advances are revealing that some non-synonymous single nucleotide variants (nsSNVs) may cause differences in drug efficacy and side effects. Therefore, it is desirable to evaluate nsSNVs of interest in their ability to modulate the drug response.

Results:
We found that the available data on the link between drug response and nsSNV is rather modest. There were only 31 distinct drug response-altering (DR-altering) and 43 distinct drug response-neutral (DR-neutral) nsSNVs in the whole Pharmacogenomics Knowledge Base (PharmGKB). However, even with this modest dataset, it was clear that existing bioinformatics tools have difficulties in correctly predicting the known DR-altering and DR-neutral nsSNVs. They exhibited an overall accuracy of less than 50%, which was not better than random diagnosis. We found that the underlying problem is the markedly different evolutionary properties between positions harboring nsSNVs linked to drug responses and those observed for inherited diseases. To solve this problem, we developed a new diagnosis method, Drug-EvoD, which was trained on the evolutionary properties of nsSNVs associated with drug responses in a sparse learning framework. Drug-EvoD achieves a TPR of 84% and a TNR of 53%, with a balanced accuracy of 69%, which improves upon other methods significantly.

Conclusions:
The new tool will enable researchers to computationally identify nsSNVs that may affect drug responses. However, much larger training and testing datasets are needed to develop more reliable and accurate tools.

ContributorsGerek, Nevin Z. (Author) / Liu, Li (Author) / Gerold, Kristyn (Author) / Biparva, Pegah (Author) / Thomas, Eric D. (Author) / Kumar, Sudhir (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor)
Created2015-01-15
130273-Thumbnail Image.png
Description
Gene expression patterns assayed across development can offer key clues about a gene’s function and regulatory role. Drosophila melanogaster is ideal for such investigations as multiple individual and high-throughput efforts have captured the spatiotemporal patterns of thousands of embryonic expressed genes in the form of in situ images. FlyExpress (www.flyexpress.net),

Gene expression patterns assayed across development can offer key clues about a gene’s function and regulatory role. Drosophila melanogaster is ideal for such investigations as multiple individual and high-throughput efforts have captured the spatiotemporal patterns of thousands of embryonic expressed genes in the form of in situ images. FlyExpress (www.flyexpress.net), a knowledgebase based on a massive and unique digital library of standardized images and a simple search engine to find coexpressed genes, was created to facilitate the analytical and visual mining of these patterns. Here, we introduce the next generation of FlyExpress resources to facilitate the integrative analysis of sequence data and spatiotemporal patterns of expression from images. FlyExpress 7 now includes over 100,000 standardized in situ images and implements a more efficient, user-defined search algorithm to identify coexpressed genes via Genomewide Expression Maps (GEMs). Shared motifs found in the upstream 5′ regions of any pair of coexpressed genes can be visualized in an interactive dotplot. Additional webtools and link-outs to assist in the downstream validation of candidate motifs are also provided. Together, FlyExpress 7 represents our largest effort yet to accelerate discovery via the development and dispersal of new webtools that allow researchers to perform data-driven analyses of coexpression (image) and genomic (sequence) data.
ContributorsKumar, Sudhir (Author) / Konikoff, Charlotte (Author) / Sanderford, Maxwell (Author) / Liu, Li (Author) / Newfeld, Stuart (Author) / Ye, Jieping (Author) / Kulathinal, Rob J. (Author) / College of Health Solutions (Contributor) / Department of Biomedical Informatics (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2017-06-30
130266-Thumbnail Image.png
Description
Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context,

Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco[superscript ®] Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond. The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures.
Created2016-06-08
130260-Thumbnail Image.png
Description
Electricity plays a special role in our lives and life. The dynamics of electrons allow light to flow through a vacuum. The equations of electron dynamics are nearly exact and apply from nuclear particles to stars. These Maxwell equations include a special term, the displacement current (of a vacuum). The

Electricity plays a special role in our lives and life. The dynamics of electrons allow light to flow through a vacuum. The equations of electron dynamics are nearly exact and apply from nuclear particles to stars. These Maxwell equations include a special term, the displacement current (of a vacuum). The displacement current allows electrical signals to propagate through space. Displacement current guarantees that current is exactly conserved from inside atoms to between stars, as long as current is defined as the entire source of the curl of the magnetic field, as Maxwell did.We show that the Bohm formulation of quantum mechanics allows the easy definition of the total current, and its conservation, without the dificulties implicit in the orthodox quantum theory. The orthodox theory neglects the reality of magnitudes, like the currents, during times that they are not being explicitly measured.We show how conservation of current can be derived without mention of the polarization or dielectric properties of matter. We point out that displacement current is handled correctly in electrical engineering by ‘stray capacitances’, although it is rarely discussed explicitly. Matter does not behave as physicists of the 1800’s thought it did. They could only measure on a time scale of seconds and tried to explain dielectric properties and polarization with a single dielectric constant, a real positive number independent of everything. Matter and thus charge moves in enormously complicated ways that cannot be described by a single dielectric constant,when studied on time scales important today for electronic technology and molecular biology. When classical theories could not explain complex charge movements, constants in equations were allowed to vary in solutions of those equations, in a way not justified by mathematics, with predictable consequences. Life occurs in ionic solutions where charge is moved by forces not mentioned or described in the Maxwell equations, like convection and diffusion. These movements and forces produce crucial currents that cannot be described as classical conduction or classical polarization. Derivations of conservation of current involve oversimplified treatments of dielectrics and polarization in nearly every textbook. Because real dielectrics do not behave in that simple way-not even approximately-classical derivations of conservation of current are often distrusted or even ignored. We show that current is conserved inside atoms. We show that current is conserved exactly in any material no matter how complex are the properties of dielectric, polarization, or conduction currents. Electricity has a special role because conservation of current is a universal law.Most models of chemical reactions do not conserve current and need to be changed to do so. On the macroscopic scale of life, conservation of current necessarily links far spread boundaries to each other, correlating inputs and outputs, and thereby creating devices.We suspect that correlations created by displacement current link all scales and allow atoms to control the machines and organisms of life. Conservation of current has a special role in our lives and life, as well as in physics. We believe models, simulations, and computations should conserve current on all scales, as accurately as possible, because physics conserves current that way. We believe models will be much more successful if they conserve current at every level of resolution, the way physics does.We surely need successful models as we try to control macroscopic functions by atomic interventions, in technology, life, and medicine. Maxwell’s displacement current lets us see stars. We hope it will help us see how atoms control life.
Created2017-10-28
130347-Thumbnail Image.png
Description
The evolution of resistance in Staphylococcus aureus occurs rapidly, and in response to all known antimicrobial treatments. Numerous studies of model species describe compensatory roles of mutations in mediating competitive fitness, and there is growing evidence that these mutation types also drive adaptation of S. aureus strains. However, few studies

The evolution of resistance in Staphylococcus aureus occurs rapidly, and in response to all known antimicrobial treatments. Numerous studies of model species describe compensatory roles of mutations in mediating competitive fitness, and there is growing evidence that these mutation types also drive adaptation of S. aureus strains. However, few studies have tracked amino acid changes during the complete evolutionary trajectory of antibiotic adaptation or been able to predict their functional relevance. Here, we have assessed the efficacy of computational methods to predict biological resistance of a collection of clinically known Resistance Associated Mutations (RAMs). We have found that >90% of known RAMs are incorrectly predicted to be functionally neutral by at least one of the prediction methods used. By tracing the evolutionary histories of all of the false negative RAMs, we have discovered that a significant number are reversion mutations to ancestral alleles also carried in the MSSA476 methicillin-sensitive isolate. These genetic reversions are most prevalent in strains following daptomycin treatment and show a tendency to accumulate in biological pathway reactions that are distinct from those accumulating non-reversion mutations. Our studies therefore show that in addition to non-reversion mutations, reversion mutations arise in isolates exposed to new antibiotic treatments. It is possible that acquisition of reversion mutations in the genome may prevent substantial fitness costs during the progression of resistance. Our findings pose an interesting question to be addressed by further clinical studies regarding whether or not these reversion mutations lead to a renewed vulnerability of a vancomycin or daptomycin resistant strain to antibiotics administered at an earlier stage of infection.
ContributorsChampion, Mia (Author) / Gray, Vanessa (Author) / Eberhard, Carl (Author) / Kumar, Sudhir (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor)
Created2013-02-12
130342-Thumbnail Image.png
Description
Background
Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D,

Background
Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D, assess its variation with malignancy, and investigate whether such variation correlates with standard nuclear grading criteria.
Methodology
We applied micro-optical computed tomographic imaging and automated 3D nuclear morphometry to quantify and compare morphological variations between human cell lines derived from normal, benign fibrocystic or malignant breast epithelium. To reproduce the appearance and contrast in clinical cytopathology images, we stained cells with hematoxylin and eosin and obtained 3D images of 150 individual stained cells of each cell type at sub-micron, isotropic resolution. Applying volumetric image analyses, we computed 42 3D morphological and textural descriptors of cellular and nuclear structure.
Principal Findings
We observed four distinct nuclear shape categories, the predominant being a mushroom cap shape. Cell and nuclear volumes increased from normal to fibrocystic to metastatic type, but there was little difference in the volume ratio of nucleus to cytoplasm (N/C ratio) between the lines. Abnormal cell nuclei had more nucleoli, markedly higher density and clumpier chromatin organization compared to normal. Nuclei of non-tumorigenic, fibrocystic cells exhibited larger textural variations than metastatic cell nuclei. At p<0.0025 by ANOVA and Kruskal-Wallis tests, 90% of our computed descriptors statistically differentiated control from abnormal cell populations, but only 69% of these features statistically differentiated the fibrocystic from the metastatic cell populations.
Conclusions
Our results provide a new perspective on nuclear structure variations associated with malignancy and point to the value of automated quantitative 3D nuclear morphometry as an objective tool to enable development of sensitive and specific nuclear grade classification in breast cancer diagnosis.
Created2012-01-05
130321-Thumbnail Image.png
Description
We have fabricated a high mobility device, composed of a monolayer graphene flake sandwiched between two sheets of hexagonal boron nitride. Conductance fluctuations as functions of a back gate voltage and magnetic field were obtained to check for ergodicity. Non-linear dynamics concepts were used to study the nature of these

We have fabricated a high mobility device, composed of a monolayer graphene flake sandwiched between two sheets of hexagonal boron nitride. Conductance fluctuations as functions of a back gate voltage and magnetic field were obtained to check for ergodicity. Non-linear dynamics concepts were used to study the nature of these fluctuations. The distribution of eigenvalues was estimated from the conductance fluctuations with Gaussian kernels and it indicates that the carrier motion is chaotic at low temperatures. We argue that a two-phase dynamical fluid model best describes the transport in this system and can be used to explain the violation of the so-called ergodic hypothesis found in graphene.
Contributorsda Cunha, C. R. (Author) / Mineharu, M. (Author) / Matsunaga, M. (Author) / Matsumoto, N. (Author) / Chuang, C. (Author) / Ochiai, Y. (Author) / Kim, G.-H. (Author) / Watanabe, K. (Author) / Taniguchi, T. (Author) / Ferry, David (Author) / Aoki, N. (Author) / Ira A. Fulton Schools of Engineering (Contributor) / School of Electrical, Computer and Energy Engineering (Contributor)
Created2016-09-09
130388-Thumbnail Image.png
Description
Although conflict is a normative part of parent–adolescent relationships, conflicts that are long or highly negative are likely to be detrimental to these relationships and to youths’ development. In the present article, sequential analyses of data from 138 parent–adolescent dyads (adolescents’ mean age was 13.44, SD = 1.16; 52 %

Although conflict is a normative part of parent–adolescent relationships, conflicts that are long or highly negative are likely to be detrimental to these relationships and to youths’ development. In the present article, sequential analyses of data from 138 parent–adolescent dyads (adolescents’ mean age was 13.44, SD = 1.16; 52 % girls, 79 % non-Hispanic White) were used to define conflicts as reciprocal exchanges of negative emotion observed while parents and adolescents were discussing “hot,” conflictual issues. Dynamic components of these exchanges, including who started the conflicts, who ended them, and how long they lasted, were identified. Mediation analyses revealed that a high proportion of conflicts ended by adolescents was associated with longer conflicts, which in turn predicted perceptions of the “hot” issue as unresolved and adolescent behavior problems. The findings illustrate advantages of using sequential analysis to identify patterns of interactions and, with some certainty, obtain an estimate of the contingent relationship between a pattern of behavior and child and parental outcomes. These interaction patterns are discussed in terms of the roles that parents and children play when in conflict with each other, and the processes through which these roles affect conflict resolution and adolescents’ behavior problems.
ContributorsMoed, Anat (Author) / Gershoff, Elizabeth T. (Author) / Eisenberg, Nancy (Author) / Hofer, Claire (Author) / Losoya, Sandra (Author) / Spinrad, Tracy (Author) / Liew, Jeffrey (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Psychology (Contributor) / Sanford School of Social and Family Dynamics (Contributor)
Created2015-08-01
130385-Thumbnail Image.png
Description
The impact of finite dielectric-covered ground-plane edge diffractions on the amplitude patterns of circular apertures is investigated. The model is based on the Geometrical Optics (GO) and the Uniform Theory of Diffraction (UTD) for an impedance wedge. The circular aperture antenna is mounted on square and circular finite ground planes

The impact of finite dielectric-covered ground-plane edge diffractions on the amplitude patterns of circular apertures is investigated. The model is based on the Geometrical Optics (GO) and the Uniform Theory of Diffraction (UTD) for an impedance wedge. The circular aperture antenna is mounted on square and circular finite ground planes that are coated with a thin lossy dielectric layer. The predictions based on the GO/UTD model are validated by comparisons to experimental results and simulated data.
Created2014-11-30
130373-Thumbnail Image.png
Description
Premise of the study: Land-plant plastid genomes have only rarely undergone significant changes in gene content and order. Thus, discovery of additional examples adds power to tests for causes of such genome-scale structural changes.
Methods: Using next-generation sequence data, we assembled the plastid genome of saguaro cactus and probed the nuclear

Premise of the study: Land-plant plastid genomes have only rarely undergone significant changes in gene content and order. Thus, discovery of additional examples adds power to tests for causes of such genome-scale structural changes.
Methods: Using next-generation sequence data, we assembled the plastid genome of saguaro cactus and probed the nuclear genome for transferred plastid genes and functionally related nuclear genes. We combined these results with available data across Cactaceae and seed plants more broadly to infer the history of gene loss and to assess the strength of phylogenetic association between gene loss and loss of the inverted repeat (IR).
Key results: The saguaro plastid genome is the smallest known for an obligately photosynthetic angiosperm (∼113 kb), having lost the IR and plastid ndh genes. This loss supports a statistically strong association across seed plants between the loss of ndh genes and the loss of the IR. Many nonplastid copies of plastid ndh genes were found in the nuclear genome, but none had intact reading frames; nor did three related nuclear-encoded subunits. However, nuclear pgr5, which functions in a partially redundant pathway, was intact.
Conclusions: The existence of an alternative pathway redundant with the function of the plastid NADH dehydrogenase-like complex (NDH) complex may permit loss of the plastid ndh gene suite in photoautotrophs like saguaro. Loss of these genes may be a recurring mechanism for overall plastid genome size reduction, especially in combination with loss of the IR.
ContributorsSanderson, Michael J. (Author) / Copetti, Dario (Author) / Burquez, Alberto (Author) / Bustamante, Enriquena (Author) / Charboneau, Joseph L. M. (Author) / Eguiarte, Luis E. (Author) / Kumar, Sudhir (Author) / Lee, Hyun Oh (Author) / Lee, Junki (Author) / McMahon, Michelle (Author) / Steele, Kelly (Author) / Wing, Rod (Author) / Yang, Tae-Jin (Author) / Zwickl, Derrick (Author) / Wojciechowski, Martin (Author) / College of Integrative Sciences and Arts (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2015-07-01